It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.
We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.
As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
Changes:
- linalg init tensor change (outs+init -> just outs)
- IntegerType::get and other builtin types now take the context as the
first arg
- LLVMType::* is gone. Now LLVM Types are just regular Type's.
Best as I can tell (e.g. from LeakSanitizer), this fixes all the leaks
except for those due to buffers created internally to the codegenned
code itself (up next I'll add the buffer deallocation pass to fix
those).
The main change is that instead of attempting to pass `refbackrt::Tensor`
to the codegenned function directly, we make all the ABI types be
UnrankedMemRef which gets passed awkwardly (but workably) as a
`{size_t rank, void *ptrToDescriptor}` on the ABI. The reason why
refbackrt::Tensor wasn't workable is that is that MLIR doesn't really
have a way to deal with the lifetime of unranked memref descriptors that
happen inside the function, which is inevitably what would happen in the
old code that would emit runtime calls to
`refbackrt.to_memref/refbackrt.from_memref` to convert back and forth to
`refbackrt::Tensor` inside the codegenned code.
So, instead of the `refbackrt.to_memref/refbackrt.from_memref` with no
real sound basis for valid lifetime management, we now have a lovely
piece of code in `refbackrt::invoke` in `Runtime.cpp` that just barely
seems to be sound. We rely on the codegenned code having these
properties, which it seems to have:
- it won't free memref descriptors or their backing buffer for arguments
of UnrankedMemRef type.
- it will allocate a separate memref descriptor for each result
UnrankedMemRef (which is ensured by having a separate memref_cast for
each)
- we can sniff the `allocatedPtr`'s (i.e. the backing buffer pointers)
to avoid double-freeing in the case of aliasing of the backing buffer
(including backing buffers for arguments feeding into results)
- to catch the case of statically allocated data (which we need to avoid
passing to `free`) , check if the `allocatedPtr` is (no joke) equal to
`0xDEADBEEF`, because there is otherwise no way to distinguish
statically allocated from malloc'ed data... (std.global_memref lowering
to LLVM by happenstance sets the allocatedPtr equal to `0xDEADBEEF`,
presumably mainly as a debugging thing)
Even with all this, we *still* need to (internally to refbackrt::invoke)
make copies of all inputs/outputs! And the details of how the LLVM-level
ABI gets laid out for e.g. function arguments/returns is still super
tricky.
This really highlights how deficient memref is as the general runtime
type for our use case. It's stewing in my mind how best to improve the
situation. My general gut feeling is that IREE's abstractions for this
are "right", but I need to think more how to distill those aspects of
IREE's design in a "reference" way for RefBackend.
Some implementation notes:
- In terms of how this is implemented, this did catch a bug in our ABI
wrapper functions in LowerToLLVM.cpp, which I had to fix (it happened to
work before through some combination of npcomprt::Tensor being passed as
a single pointer + probably me infinite-monkey-ing it until it worked)
- This actually removes 2 out of the 3 compiler runtime functions (the
only one left is "abort_if". (most of the memref descriptor code moved
from CopmilerRuntime.cpp to Runtime.cpp)
- this also means deleting `refbackrt.from_memref` and
`refbackrt.to_memref`
* Going through TODOs on the PyTorch side, this is a big cause of them (not being able to have constants for signed/unsigned).
* Added complex while in here since we're at the phase where it is better to just have things complete than partially done.
* Organizes the BasicPyOps.td file by function.
* Renamed `to_boolean` -> `as_predicate_value` (trying to consistently use "predicate" to refer to i1/low-level types and Bool/Boolean to refer to Python bool types).
* Incorporates source fixes.
* Uses upstream pybind11 detection logic.
* Patches CI.
* This may break the CI, which will need to be fixed manually in a followup.
Note that unlike aten.matmul which has dynamic behavior
depending on the argument ranks (can do matrix-matrix, matrix-vector,
batch matmul, etc.), aten.mm is just a vanilla matrix
multiply, which can be lowered precisely to tcf.matmul.
The "test" is really just an example that I stared at while getting my
feet wet with this. We probably want something that actually tests this
as part of `ninja check-npcomp`.
It was annoying that we were creating shape.get_extent in the middle of
the bufferization pipeline, as it required running convert-shape-to-std
at an awkward place. To make that cleaner, just open-code the
extract_element ops that shape.get_extent expands into.
This is a little gross, but it helps with the macroscopic pipeline
ordering issues. Anyway, the train is long-gone of trying to treat
shapes as some special data type that should only be operated on with
shape ops.
Also,
- reorder tensor constant bufferize (which is a module pass) to bracket
all the bufferization function passes, to make the parallelism
opportunities there clearer. Now we have a very clean little
bufferization segment of our pipeline construction.
This vastly simplifies our code, allowing deleting multiple ops,
simplifying multiple passes, and removing a whole pass.
Now `refback` dialect is down to one op (refback.alloc_memref, which
simplifies allocations to just take a shape instead of individual
extents).
This involved adding a `tcp.splatted` op to splat a dynamically sized
init tensor. See rationale in TCPOps.td docs.
One interesting observation is that when lowering tcf.matmul to
linalg.matmul, we need to both 1) create the error checks and 2)
calculate a shape transfer function to create the init tensors.
Previously, 2) was deferred to bufferizing tcp.matmul later. I'm not
sure if this is a conflation of concerns or not. For now, it's not a big
burden.
* convolution, convolution_backward, _log_softmax, _log_softmax_backward_data, nll_loss_forward, nll_loss_backward, nll_loss2d_forward, nll_loss2d_backward, copy_
* Extends the recognition logic and metadata for handling inplace transformations, optional tensors, ints, lists and dropped args.
* The kernel_calls generated by test_conv_nllloss_grads.py now convert to ATen.
* The result *almost* comes out as a pure tensor program with the exception of the copy_ op, which I will do some followup work to deal with.
* More progress on #97
* Deletes prior code generator from previous attempt (moved some of it into this one).
* Renames old generated tablegen source to "Legacy".
* Generates ODS and import rules for most binary and unary arithmetic ops.
* Removes old generated ops and integration tests that were testing details of the prior setup.
Register the following for the multiply op:
- tcf.mul
- tcp.mul
- TCP->TCP lowering
- Shape transfer, broadcasted multiplicands
- Lower to standard `MulFOp` op
* Two op interfaces, one for querying instance metadata and one for getting static data needed to construct an op from a generic form.
* For torch.generic_kernel ops, metadata is splatted in during capture from Torch (it comes from the op registry, which will work for either device capture or graph import).
* Moved the 'add' out of the generated set so I can experiment on it. It implements the TorchBuildableKernelOpInterface interface which provides its metadata.
* The ATenRecognizeKernelsPass pass generically lowers from a torch.generic_kernel to recognized ops that implement the TorchBuildableKernelOpInterface, handling the various types of transformations that we allow at this stage.
* Adds Basicpy List, Tuple, Dict types and plumbs through C API.
* Started debugging the issues around aten::conv2d capture, but a PyTorch bug is suspected.
* Was able to manually verify that the basic conv2d forward test captures correctly with a workaround.
* Need to resolve some printing issues upstream and move these tests to an integration test target (they take ~seconds to run).
* Now gets far enough to capture batch_norm.
* Has some issues still with in-place ops.
* Can materialize constants.
* Includes an upgrade to PyTorch nightly, which has important bug fixes for fallback and boxed kernel dispatch.
* Fixes#78, #79, #80.
* Will do more testing in a follow-up once further bugs are fixed that facilitate getting at the other features.
The time has come for BypassShapes/LowerShapedResultsToMemref to go away :(
For the reference backend, being consistent with upstream conventions is
the name of the game now.
This is a step down in a number of ways, e.g. test clarity and
separation of concerns. But it is fewer files and fewer tests, and
*does* address the "TODO: This is really fragile". It also eliminates two
more ops from the refback dialect (sadly, they are the
shaped_results/yield that we were getting kind of fond of, but alas).
Now that it has grown source/target materialization capabilities
(spelled with ops tensor_load/tensor_to_memref), we can use it. We can
also now delete refback.memref_to_tensor/refback.tensor_to_memref.
This is also a first step to reducing the downstream functionality
needed in the refback dialect.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
I now realize that VerboseCamelCase is not the best choice for dialect
directory/file names and C++ identifiers (take e.g. "Linalg", "Basicpy",
etc. as prior art here; not LinearAlgebra or BasicPython). If I had to
name the convention it seems to be "Shortword" (or of course just
acronym dialects like LLVM, SCF, etc.).
This rename also has the side benefit of differentiating RefBackend
directories, which now refer to the actual backend itself, from
Refback/Refbackrt, which are the dialects which happen to be used by
that backend.
This is the first in a patch series that is refactoring the
constellation of things variously called or associated with "E2E",
"RefE2E", "npcomprt", and "TCP" into a more cleanly layered result.
Concretely, this first patch fixes the fact that TCP was basically
acting like a dumping ground needed by the reference backend. This
splits it out, which is fairly mechanical, but touches a lot of lines of
code (basically replacing `tcp` with `refback` and `TCP` with
`RefBackend).
Now, the RefBackend dialect is that dumping ground, which
is slighly better, as it starts allowing TCP to become a nice clean
middle layer that is not related per se to the reference backend.
The previous name RefE2E or "reference e2e flow" was super confusing.
Now that we are seeing more clearly where the "backend" distinction
lies, the [RefBackend] commit tag is born :)
Date: Fri Sep 18 13:55:52 2020 -0700
- Update to linalg syntax
- New generated builders are better. Custom builder for
tcp.shaped_results is now redundant.
This now gets the overall "RefE2E" compilation stack to a point that I'm
fairly happy with. We simplify it by mostly embracing the "descriptor"
view of the world.
The overall flow is best understood by reading through the
createE2ELoweringPipeline function in lib/E2E/E2E.cpp
That function creates a pass pipeline that lowers from "TCF" (which is
~numpy level of abstraction) down to LLVM IR.
A brief high-level summary of what happens there:
1. TCF to TCP conversion. This involves reifying error handling in the
form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir
2. Lowering shape constraints. This converts shape constraints into
eager error-handling code. See test/E2E/lower-shape-constraints.mlir
This pass will soon go upstream.
Because this lowers to std.assert, some later passes like
LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this
through e2e.
See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test
that properly aborts in case of an error.
3. Lowering tensors to memrefs. This is done via a series of passes
rather than an single mega conversion. Unlike the previous code that
mixed in the npcomprt ABI stuff here, it's now a very clean "pure
memref" conversion.
See test/E2E/lower-*-to-memref.mlir and
lib/E2E/TensorToMemref/
Most of the changes are concentrated here.
4. As part of the above, we use the upstream ConvertShapeToStandard for
lowering shapes.
5. We lower linalg to loops and lower loops to CFG using upstream
passes.
6. Rewrite the "ABI" boundaries of the program to npcomprt data
structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and
how global tensor constants are represented. One of the major
improvements in this commit is that now it's a very clean rewrite that
just replaces memrefs on ABI boundaries with !npcomprt.tensor (before
there was a get_extent function that is not needed).
See test/E2E/lower-to-npcomprt-abi.mlir
7. Lower to LLVM with upstream mlir patterns + some patterns for the
npcomprt lowerings.
One aspect here that is still a remnant of a non-descriptor-based tensor
to memref flow is the BypassShapes + LowerShapedResultsToMemref.
BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results
(basically a "tie_shape" kind of op), and then
LowerShapedResultsToMemref uses those annotations to allocate output
buffers while lowering the "tensor compute ops". Note that there are
very few "tensor compute" ops currently supported (tcp.add +
tcp.broadcast_to), so we just hardcode them in both passes.
Realistically, I expect this to go away as we fully embrace the
descriptor-based approach for simplicity, so don't look too deep into
it.
* llvm-project: b5924a8e27536d19dd5c4d302db29fb6163d5faa
* mhlo: 848ca244d20f045b7921da55a98a04d95ef94f0e
* Multiple breakages that need to be fixed.
Fixes:
* Refactor dialect registration
* Remove all kindof methods (Casting functionality has been added upstream and is implicitly
available, see https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types/1547.)
* Update dialect registration to comply with https://reviews.llvm.org/D85495.
* Remove type kinds and update some changed dialect signatures.
* Upgrade ATen dialect to match upstream needs.
* Move dialect registration to tablegen.
* Register the ListType in tablegen.
* Change dialect initialization signature.
* Use TypeSwitch in MlirIr location printer.
* Remove global registry depends from npcomp-opt.
* Change LowerToLLVM to pass an MLIRContext vs an LLVMDialect for type creation.
* Remove dep on MLIREDSCInterface that is removed upstream.
* Thread through the DialectRegistry for opt and python-like tools.
* Modernize pass registration (This was forced because the GEN_PASS_REGISTRATION code now generates inline functions vs literal pass registration statements)
Co-authored-by: Marius Brehler <marius.brehler@iml.fraunhofer.de>
This patch adds a dialect intended to be used as a frontend dialect
to facilitate lowering from "A Tensor Library" in torch/pytorch.
This patch includes several passes that are useful in conjuction with the
dialect:
--aten-layer-name: Generates layer names for each operation, which are not
present in the original pytorch.
--aten-to-std: Lower the ATen dialect into standard dialect function calls.
--return-elimination-pass: convert functions (primarily the toplevel function)
to pass return values by reference. This simplifies pytorch integration.
--aten-op-report: generate a textual report about the model
--liveness-report
Future patches will implement actual integration with the pytorch jit to
intercept and generates MLIR in this dialect, then lower the resulting MLIR
into function calls through aten-layer-name -> aten-to-std ->
return-elimination -> std-to-llvm. The result would then jitted using the LLVM
jit, linked against a runtime library which makes calls back into pytorch to
implement all the layers.
Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>
Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>
Mostly this is CMake cleanup. Several library dependencies are missing, which
is often revealed with shared library builds. Also, it's generally bad to
link directly against LLVM libraries because it fails when using
LLVM_LINK_LLVM_DYLIB. MLIR will pull in libLLVM.so, and there will be
duplicate linkage with the the explicit libraries. There may need to be more
refactoring here.