This is part 1 of ~3, formatting all miscellaneous text files and CPP files matched by a first run of pre-commit. These tend to be low change-traffic and are likely not disruptive.
Subsequent patches will format Python files and remaining CPP files.
Gridsampler
In onnx the interpolation mode is called 'linear' whereas in pytorch it
is called 'bilinear'. This led to the problem that everything other than
'bilinear' was rejected. It needed to be changed to linear.
- Fix pad size to data_rank for dynamic paddingSize Tensor.
- This fix is in accordance with [input
specification](https://onnx.ai/onnx/operators/onnx__Pad.html#inputs) for
onnx.Pad
- Impl will need to be updated for dynamic padSize when support for
`axes` is added.
All e2e iree tests compiled, but they have the run issue of mismatch of
dtype like the following
```
expected:
1x1x2x2xsi32=[[[12 16][24 28]]]
actual:
1x1x2x2xi32=[[[12 16][24 28]]]
```
This commit also cleans up the OnnxToTorch lowering for the Squeeze and
Unsqueeze op and adds the support for handling edge cases.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Version number was set too high. Lowered to support more cases allows
more tests to pass.
Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
Previous implementation erroneously mixed up num_outputs with
slice_size. New version correctly computs the slice size and directly
performs slicing rather than leveraging `aten.split.tensor`. This is due
to `onnx` supporting a fixed number of splits making the size
computation more easily computeable when lowering to `aten` rather than
deferring to `aten.split.tensor`.
---------
Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
Align corner modes which select what the corners mean.
Either the center of the corner points or the edges of the edge points.
---------
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
1. onnx.MatMulInteger now converts to aten.matmul instead of aten.mm
2. aten.matmul, for ranks >=2, now allows quantized inputs and will
lower to linalg::quantized_matmul or linalg::quantized_batch_matmul.
3. added AtenMatmulOp to the FuseQuantizeOps rewrite patters
QuantizeOperands, QuantizeTransposedOperands, and QuantizeAccumulator
4. added several tests, including some to test AtenMmOp with varying
quantization signed-ness.
5. a quantized matmul mat-vec test is added to verify the failure to
lower to linalg; cleaned of out-of-date code related to common
torch-mlir lowering xfails.
6. in debugging a real model with quantized matmuls, I found a bug on
the scalarize-shapes pass which resulted from the aten.full op folder
returning an incompatible result type. This is fixed by the small change
here to
[lib/Dialect/Torch/IR/TorchOps.cpp](https://github.com/llvm/torch-mlir/compare/main...zjgarvey:torch-mlir:MatMulIntegerFix?expand=1#diff-dc8ed165c207918e606490eee3984b1ad51d7034e6aac36fc046bf47f6f03f4f).
This PR only performs a lit test. In lieu of an e2e test, https://github.com/nod-ai/SHARK-TestSuite/pull/142 makede sure that the lowering works & the numbers check out.
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
Shapes can be processed as tensors to represent the set of dimensions.
As reshapes take a list of scalars this can result in a single dynamic
dimension blocking the adjacent static dimensions.
This pass attempts to de-couple tensor computations related to shapes
and propagate values to better support lowering scalar tensor
computations.
This commit also cleans up the OnnxToTorch lowering for the ReduceMean
op and adds the support for handling edge cases.
Signed-Off By: Vivek Khandelwal vivekkhandelwal1424@gmail.com
See the related issues here:
[SHARK-Turbine#556](https://github.com/nod-ai/SHARK-Turbine/issues/556)
1. Adds uint8 casting to onnx.Cast op
2. Fixes an issue with onnx.DequantizeLinear when the scale comes with
shape [1].
3. Adds support for unsigned types in an AtenItemOp folder
4. Adds a simpler quantized model for easier debugging
5. Adds a fusion pass to convert [quant -> dequant -> transpose -> mm]
patterns to [transpose -> quant -> mm].
6. Moved some xfails that are still not passing, but for different
reasons than onnx.cast failures.
Two e2e tests (AdaptiveAveragePool1/2dUnitOutputSizeDynamic) were
failing due to numerics. This was as a result of passing -1 as the
kernel size in the lowering for the corresponding onnx op
GlobalAveragePool.
Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
This commit adds the OnnxToTorch lowering for the Mish, Softplus,
HardSwish, Trilu, ThresholdedRelu op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This adds support for converting DynamicQuantizeLinear from torch-onnx
to torch.
I could not get an e2e test to pass, since there seems to be some issues
with uint8 casting somewhere lower in the pipeline. For example
compiling with IREE for llvm-cpu, I would get either the correct zero
point (if zp < 128) or the correct zero-point minus 256 (if zp >= 128).
The output tensor seems to always return a tensor of zeros, which also
occurs when running uint8 examples through QuantizeLinear.
Edit: the first problem can be resolved by casting the output back to
uint8 on output, the second problem is resolved with PR #3018
The only difference between version 7 and newer versions is support for
different data types. We should allow this pattern to match as early as
7. Earlier versions have a more manual broadcast specification through
attributes, so I did not include those versions.
See: [onnx.Div
docs](https://onnx.ai/onnx/operators/onnx__Div.html#l-onnx-doc-divl)
Reduce mean lowerings did not succesfully lower to `linalg` via torched.
There were two separate paths that could be consolidated to a single
simpler pass. This resulted in a significant improvement in test
coverage.
If the broadcast shape is length-1 at a dim while `?` in the input dim
then we need to broadcast to the dynamic dim. This is equivalent to
taking a max of two dimensions.
This folds small version of the tensor-scalar comparison operators as
they are commonly used for shape computations. This includes le, lt, ge,
gt, eq, and ne.
The current padding operation was not functional for dynamic shapes.
Updated and enabled tests so that onnx.pad tests pass.
Work TBD for reflection padding.
We can support `onnx.Size` by requesing the size of each dimensions and
taking the product of the results, then packing it into a tensor.
---------
Co-authored-by: Scott Todd <scott.todd0@gmail.com>
This mostly copy-pastes the reduce minimum implementation to reduce max
to improve test coverage. We also improve the aten lowering for min/max
dim for unsigned types.