Commit Graph

360 Commits (b2185195e8fecb3568d53a97a502fc77a22a6daf)

Author SHA1 Message Date
Sean Silva 1e357ae680 Add simple type refinement pass.
Currently implemented as a simple intraprocedural dataflow analysis over
a standard ShapedType lattice (hasRank, sizes, and elementType).

It currently hardcodes a few key pieces of information:
- shape transfer functions
- whether it is legal to update the operand type of an op

This needs to be made pluggable obviously and the core propagation logic
moved somewhere agnostic.
2021-04-07 11:06:34 -07:00
Sean Silva 6431b0f11f Add primitive ArrayToTensor (numpy-array-to-tensor) pass.
The current implementation is just sufficient to do a unary aten.tanh
from the e2e spike, and just applies some local rewrite patterns.  I've
sketched out the more full explanation of where this pass eventually
need to go in the pass docs.

Adding this required adding `numpy.tensor_static_info_cast`, which is
the tensor analog of `numpy.static_info_cast`. This op encapsulates the
same numpy-specific "no runtime code" casting semantics, in particular
the interpretation of `!numpy.any_dtype`. The
`numpy.tensor_static_info_cast` I see in practice now are "information
erasing" and will be removed by a later pass that exploits the fact that
aten ops are agnostic to the static info in the operand types (so
substituting a type with more static info is fine).

Side note: we *need* to do dtype and rank inference before aten->tcf
(which will eventually mostly be aten->linalg+guards), because each aten
op is idiosyncratically overloaded based on dtype and rank. Without
copying that idiosyncratic overloading into lower layers (layering
violation), we cannot really lower it to anything until we do that.
2021-04-05 17:56:35 -07:00
Sean Silva 30356c41c8 Add torch-adjust-calling-conventions pass.
This pass incorporates torch.type_bound info and also removes NoneType
returns (eventually it will rewrite tuple types too, but can't yet
because !basicpy.TupleType doesn't track element types).

Recommend looking at adjust-calling-conventions.mlir first to see what
it is doing, and holding your nose for the implementation of the pass.
I decided to implement this with the conversion framework, because it
gives us *some* goodies for type conversion -- mainly avoiding large
amounts of tricky RAUW dances. Unfortunately, the conversion framework
isn't a perfect fit for a couple reasons:
- the incorporation of torch.type_bound is a context-sensitive rewrite
  (requires looking at the arg attr, not just the type).
- NoneType conversion is 1->0, which requires some special handling
- (not implemented yet) 1->N tuple type conversions require special
  handling.
It's a little bit scary, but on balance doing it the other way would
have its own downsides.
2021-04-05 17:56:35 -07:00
Sean Silva e749074bae Basic infra for annotate shapes and dtypes on arguments.
These allow users to annotate a known "type bound" on the argument,
which can seed shape/dtype inference. We don't rewrite the function
types as part of the import process (it will happen in a
yet-to-be-written pass) because:

1. We would need to interprocedurally rewrite all calls to keep the IR
   consistent. Currently, we have a place after GlobalizeObjectGraph but
   before we convert to tensors where this is convenient to do. Ideally,
   we would do this on the object graph representation.

1. We don't necessarily know that adjusting the function type is a legal
   calling convention change. The pass will have blessed knowledge (by
   the pass pipeline author) that adjusting the argument type based on
   the type bound is safe (which it frequently is).

2. Note that in principle, a type bound could be a fairly general thing
   (such as maximum sizes of dimensions, unions of multiple concrete
   types, etc.). The pass will in principle have logic to interpret the
   type bounds and to determine a suitable "best" (and legal) argument
   type.
2021-04-01 18:40:03 -07:00
Sean Silva 99178a167d Bump llvm-project to 0524a09cc7e1a0797982feacf505825231efbee7
- renames of OwningRewritePatternList -> RewritePatternSet
  - also `insert` to `add`
- RewritePatternSet holds a context now
- memref dialect split from std
2021-03-23 14:29:05 -07:00
Bryce Arden 4591884d06 [refbackrt] Scalar arg support
* Adds f32 scalar argument support across the ABI boundary.
* Adds support for passing input type / shape information
  across the ABI boundary
* Adds support for parsing / creating input FloatAttr's in
  `npcomp-run-mlir`
2021-03-23 13:16:44 -07:00
Sean Silva 703428eff4 Add support for "trailing_" and "out" variants of various ops.
We already had the `promoteTrailingOutTensor` flag, but weren't using
it. A inplaceVariantKernelName flag needed to be added.

This change is a little dissatisfying, as the conversions done by the
RecognizeKernelsPass are currently non-orthogonal. In particular,
`kDropResultAndAliasArg0` probably won't work as intended if mixed with
these (we probably need to promote kDropResultAndAliasArg0 to not be an
arg-level thing anyway, as we have done with promoteTrailingOutTensor).

This involved adding a new op `numpy.overwrite_array`.

```
numpy.overwrite_array %arg2 overwrites %arg0 : tensor<2x3xf32>, !numpy.ndarray<[2,3]:f32>
```

This models the destructive update behavior. Note that in the above op,
we cannot simply RAUW %arg0 with a suitably conveted %arg2 (for example,
%arg0 might have uses that are not dominated by %arg2, or might have an
alias relation with some other array in the program). In general, we
need a pass analogous to "SSA-formation" which knows how to see through
these to uncover an underlying tensor program.

Also, add tanh_out_e2e.py/div_inplace_e2e.py and fix some bitrot in
refjit.py which is my running example I'm trying to get working.
2021-03-19 10:34:50 -07:00
Aaron Arthurs 4fd9b4afb5
Import ATen conv2d conversion and test (#180)
* Import ATen conv2d conversion and test

This is a first attempt at expanding ATen-to-TCF conversion for the
conv2d operator. Eventually, this will come in use when lowering a
high-level conv-based model.
2021-03-12 17:21:16 -08:00
Sean Silva 58c7030104 Support multiple instances of a class in GlobalizeObjectGraph.
This happens in practice with e.g. ResNet from torchvision (multiple
instances of the same BatchNorm class).

The key observation is that for this program, and the expected set of
programs, we can convert the program to the same globalized form with a
bit more static analysis and effort to suitably monomorphize the
program. Though what we are doing here is fairly annoying to implement,
it saves any nontrivial later pass from having to do similar analyses
(or worse). E.g. shape inference would need to be object-graph aware,
mutation/lifetime analyses would have to be aware, etc. Additionally, it
would make us front-load what it means to have a !torch.nn.Module type
on an ABI boundary, which we are just not ready to handle.

I'm really, really hoping that in practice we can get away with
this, otherwise it's going to be really rough designing a representation
(and implementing everything to back it) that is convenient to transform
and gracefully scales from full object graph (in the most dynamic case)
down to a fixed set of global slots like we have here (in the most
static case, which we presume a lot of practical programs fall into).

This also involved introducing a
`torch-prepare-for-globalize-object-graph` pass that does a minimal set of
lowerings to simplify the IR into a more orthogonal and analyzable form,
and a `torch-globalize-pipeline` helper.

Recommended review order:
- updated documentation in Passes.td
- new tests in `globalize-object-graph-multiple-instances*.mlir`
- implementation of GlobalizeObjectGraph.cpp
- PrepareForGlobalizeObjectGraph.cpp + prepare-for-globalize-object-graph.mlir
- misc stuff like torch-globalize-pipeline pipeline definition.

With this, we can import, globalize, and inline resnet18 from
torchvision:
https://gist.github.com/silvasean/821586afc19b67d9fb72030b2e0adeb8
2021-03-11 19:21:07 -08:00
Sean Silva c837dbb077 Properly import the entire torch::jit::CompilationUnit
This primarily unlocks proper handling of free functions (that is,
functions that are not methods of any torch.nn.Module).

Recommended review order:
- `ivalue_importer.cpp` + `ivalue_import/functions*.py`
- `GlobalizeObjectGraph.cpp` + test case
- misc other stuff

The `torch::jit::CompilationUnit` is basically a backing store or
"context" holding all the possible functions in the program. The
previous code was not explicitly accessing this data structure, since it
just imported the `torch::jit::Function`'s that it saw attached to
methods.

Subtly, any time a TorchScript module called into a free function, the
free function gets incorporated into the torch::jit::CompilationUnit,
but doesn't show up anywhere when dumping the module, except in the
curious pattern:

```
%5 : Function = prim::Constant[name="adaptive_avg_pool2d"]()
%6 : Tensor = prim::CallFunction(%5, %input.1, %4)
```

That is, calls are indirect calls, and are accessed via `prim::Constant`
materializing a function object. Even stranger, the `name` attribute here
doesn't really even tell the full story -- it doesn't correspond to
anything. It turns out that the c10::FunctionType itself actually holds
a pointer to the `torch::jit::Function` in the compilation unit
directly (so there is actually no indirection in prim::CallMethod,
because any two values of the same FunctionType call the same
function!). E.g. when converting the IR to bytecode, the "name" is
ignored [code link](1d6bd15790/torch/csrc/jit/runtime/interpreter.cpp (L937)).
We do import `prim::CallFunction` as a `std.call_indirect` though
because it's more braindead to do it that way (it gets canonicalized to
a direct call easily).
2021-03-01 12:08:01 -08:00
Sean Silva 79a3f639bf Give torch.global_slot an initializer region.
This is a much simpler representation than the ad-hoc initializer
function we had before. It is also less general, but given the rationale
in Passes.td it seems like the right tradeoff right now.

We can probably carry this representation for quite a while, and when we
can't, it likely means that TorchScript has fixed their object identity
bug and we probably need to just upgrade to a more general object graph
modeling (more general than GlobalizeObjectGraph).

In particular, we don't want to deal with defining and carrying around
this initializer function concept until we need it. For example, if we
want to constant-fold the global slots into uses, this is a much better
representation, and it plays better with symbol-dce (the initializer
function counts as a "use" of the symbol).

(the alternative would have been to write a pass that converts the
initializer function to this form when possible, but I realized that
lots of information had been lost which made that fairly annoying -- it
was all self-inflicted anyway, so best to just go to the source
(GlobalizeObjectGraph) before the information is lost)

Now symbol-dce works nicely (no more "training" bools)
```
pt_util ~/tmp/classifier.pt --import --exported-name forward \
| npcomp-opt -torch-globalize-object-graph -inline -symbol-dce
```
IR: https://gist.github.com/silvasean/8abe63d70d24e29d6db9170ccc8d512b
2021-02-26 16:24:19 -08:00
Sean Silva a375ccf9da Add ability to annotate TorchScript classes.
The first use case is to annotate certain program constructs as either
exported or private. In this commit we plumb it down to
GlobalizeObjectGraph which makes use of this information.

Recommended review order:
1. class_annotator.h/.cpp + `test/module_import/annotations/*`
    - New abstractions to communicate with Python code and annotate.
2. IR changes in TorchOps.td
    - Adding "private" attribute to various things.
3. ivalue_import.cpp changes
    - Module + ClassAnnotator = annotated IR
4. GlobalizeObjectGraph.cpp + tests
    - use new "private" attributes to create "private" IR.
    - also, tweak some of the op deleting mechanics, which was triggering
      some memory errors / assertions

With this, we can run the classifier through and inline it as follows:
```
frontends/pytorch/utils/pt_util.py --import --exported-name forward ~/tmp/classifier.pt \
| npcomp-opt -torch-globalize-object-graph -inline
```
IR: https://gist.github.com/silvasean/32dcad9f6270557f412094a77cecdd69
2021-02-25 11:28:34 -08:00
Sean Silva 1b769f7841 Extend GlobalizeObjectGraph to handle torch.prim.GetAttr returning NnModuleType
This happens in practice. With this, we can globalize slots for the
non-trivial classifier layer obtained from
https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Joint_Intent_and_Slot_Classification.ipynb

This also adds support for tuple return types, which were needed by that
model.
2021-02-19 10:23:25 -08:00
Sean Silva 158c5c484d Implement GlobalizeObjectGraph transformation.
This required restructuring of how we model TorchScript on import. The
main difference is that now we split out a `torch.class_type` that holds
methods and declarations of the types of each slot. This is more
consistent with TorchScript (our previous representation was
"denormalized").

Recommended reading order:
1. check out the description of `torch.class_type` in `TorchOps.td` and
   look at `test/Dialect/Torch/ops.mlir` and
   `frontends/pytorch/test/module_import/` to familiarize with the new
   representation.
   - Just look at the new IR. The diff between the old names and new
     names is confusing.
2. check out `test/Dialect/Torch/globalize-object-graph*.mlir`
   and read along with the pass description in
   `include/npcomp/Dialect/Torch/Transforms/Passes.td`
3. Read the code in `GlobalizeObjectGraph.cpp` and miscellaneous changes
   in `ivalue_importer.cpp`, `TorchOps.cpp`, etc.
2021-02-18 18:18:47 -08:00
Aaron J Arthurs c0e14da888 Fix TensorFromElementsOp reference 2021-01-28 12:01:35 -08:00
Aaron J Arthurs fc650c9447 Import TCP pad 2021-01-28 12:01:35 -08:00
Sean Silva 689b40c7a6 Add initial TorchScript module importer
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.

We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.

As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
2021-01-28 11:55:17 -08:00
Sean Silva 3f4161635c Bump llvm-project to be7352c00d51f4358db3a23ed6a077f7cb48eafd
- TensorFromElementsOp -> tensor::FromElementsOp
- `cmpi "eq", ...` -> `cmpi eq, ...`. Same for `cmpf`
- syntax change for private func ops
- some changes to the python bindings
2021-01-21 11:16:55 -08:00
Aaron Arthurs 85898aaf10
Add TCF convolutional op with bias addition (#137) 2020-12-15 12:53:12 -08:00
Sean Silva 46aa6d0a24 [RefBackend] Fix leaks related to ABI boundaries.
Best as I can tell (e.g. from LeakSanitizer), this fixes all the leaks
except for those due to buffers created internally to the codegenned
code itself (up next I'll add the buffer deallocation pass to fix
those).

The main change is that instead of attempting to pass `refbackrt::Tensor`
to the codegenned function directly, we make all the ABI types be
UnrankedMemRef which gets passed awkwardly (but workably) as a
`{size_t rank, void *ptrToDescriptor}` on the ABI. The reason why
refbackrt::Tensor wasn't workable is that is that MLIR doesn't really
have a way to deal with the lifetime of unranked memref descriptors that
happen inside the function, which is inevitably what would happen in the
old code that would emit runtime calls to
`refbackrt.to_memref/refbackrt.from_memref` to convert back and forth to
`refbackrt::Tensor` inside the codegenned code.

So, instead of the `refbackrt.to_memref/refbackrt.from_memref` with no
real sound basis for valid lifetime management, we now have a lovely
piece of code in `refbackrt::invoke` in `Runtime.cpp` that just barely
seems to be sound. We rely on the codegenned code having these
properties, which it seems to have:

- it won't free memref descriptors or their backing buffer for arguments
  of UnrankedMemRef type.

- it will allocate a separate memref descriptor for each result
  UnrankedMemRef (which is ensured by having a separate memref_cast for
  each)

- we can sniff the `allocatedPtr`'s (i.e. the backing buffer pointers)
  to avoid double-freeing in the case of aliasing of the backing buffer
  (including backing buffers for arguments feeding into results)

- to catch the case of statically allocated data (which we need to avoid
  passing to `free`) , check if the `allocatedPtr` is (no joke) equal to
  `0xDEADBEEF`, because there is otherwise no way to distinguish
  statically allocated from malloc'ed data...  (std.global_memref lowering
  to LLVM by happenstance sets the allocatedPtr equal to `0xDEADBEEF`,
  presumably mainly as a debugging thing)

Even with all this, we *still* need to (internally to refbackrt::invoke)
make copies of all inputs/outputs! And the details of how the LLVM-level
ABI gets laid out for e.g. function arguments/returns is still super
tricky.

This really highlights how deficient memref is as the general runtime
type for our use case. It's stewing in my mind how best to improve the
situation. My general gut feeling is that IREE's abstractions for this
are "right", but I need to think more how to distill those aspects of
IREE's design in a "reference" way for RefBackend.

Some implementation notes:

- In terms of how this is implemented, this did catch a bug in our ABI
  wrapper functions in LowerToLLVM.cpp, which I had to fix (it happened to
  work before through some combination of npcomprt::Tensor being passed as
  a single pointer + probably me infinite-monkey-ing it until it worked)

- This actually removes 2 out of the 3 compiler runtime functions (the
  only one left is "abort_if". (most of the memref descriptor code moved
  from CopmilerRuntime.cpp to Runtime.cpp)

  - this also means deleting `refbackrt.from_memref` and
  `refbackrt.to_memref`
2020-11-25 13:09:58 -08:00
Stella Laurenzo 3937dd14cb Add basicpy.numeric_constant op.
* Going through TODOs on the PyTorch side, this is a big cause of them (not being able to have constants for signed/unsigned).
* Added complex while in here since we're at the phase where it is better to just have things complete than partially done.
2020-11-24 16:44:40 -08:00
Sean Silva 5227d52c26 [RefBackend] Use std.global_memref instead of homegrown thing
This vastly simplifies our code, allowing deleting multiple ops,
simplifying multiple passes, and removing a whole pass.

Now `refback` dialect is down to one op (refback.alloc_memref, which
simplifies allocations to just take a shape instead of individual
extents).
2020-11-13 18:43:50 -08:00
Sean Silva 1c7c362e29 [TCP] Replace tcp.matmul with linalg.matmul.
This involved adding a `tcp.splatted` op to splat a dynamically sized
init tensor. See rationale in TCPOps.td docs.

One interesting observation is that when lowering tcf.matmul to
linalg.matmul, we need to both 1) create the error checks and 2)
calculate a shape transfer function to create the init tensors.
Previously, 2) was deferred to bufferizing tcp.matmul later. I'm not
sure if this is a conflation of concerns or not. For now, it's not a big
burden.
2020-11-10 18:58:28 -08:00
Sean Silva 0427aacb0b [TCP] Replace elementwise ops with std elementwise ops. 2020-11-10 18:58:28 -08:00
Stella Laurenzo 6c702b149f Add a number of kernels and new patterns.
* convolution, convolution_backward, _log_softmax, _log_softmax_backward_data, nll_loss_forward, nll_loss_backward, nll_loss2d_forward, nll_loss2d_backward, copy_
* Extends the recognition logic and metadata for handling inplace transformations, optional tensors, ints, lists and dropped args.
* The kernel_calls generated by test_conv_nllloss_grads.py now convert to ATen.
* The result *almost* comes out as a pure tensor program with the exception of the copy_ op, which I will do some followup work to deal with.
* More progress on #97
2020-11-04 14:36:59 -08:00
Sean Silva 0761df9f58 Bump llvm-project to 72ddd559b8aafef402091f8e192e025022e4ebef
- Fixup to OpBuilderDAG
- Update for affine map naming
2020-10-30 18:12:41 -07:00
Aaron J Arthurs 29c715b6b1 Add TCP mul test 2020-10-30 15:11:52 -07:00
Stella Laurenzo c08935a418 Rewrite ATen ODS code generator to be based on new op registry and new signature recognition system.
* Deletes prior code generator from previous attempt (moved some of it into this one).
* Renames old generated tablegen source to "Legacy".
* Generates ODS and import rules for most binary and unary arithmetic ops.
* Removes old generated ops and integration tests that were testing details of the prior setup.
2020-10-28 10:37:37 -07:00
Stella Laurenzo 510f226df2 Expose signature metadata to ops and implement ATenRecognizeKernelsPass pass.
* Two op interfaces, one for querying instance metadata and one for getting static data needed to construct an op from a generic form.
* For torch.generic_kernel ops, metadata is splatted in during capture from Torch (it comes from the op registry, which will work for either device capture or graph import).
* Moved the 'add' out of the generated set so I can experiment on it. It implements the TorchBuildableKernelOpInterface interface which provides its metadata.
* The ATenRecognizeKernelsPass pass generically lowers from a torch.generic_kernel to recognized ops that implement the TorchBuildableKernelOpInterface, handling the various types of transformations that we allow at this stage.
2020-10-26 20:31:45 -07:00
Stella Laurenzo 029815152e Add remaining pieces to capture full example models.
* Adds Basicpy List, Tuple, Dict types and plumbs through C API.
* Started debugging the issues around aten::conv2d capture, but a PyTorch bug is suspected.
* Was able to manually verify that the basic conv2d forward test captures correctly with a workaround.
* Need to resolve some printing issues upstream and move these tests to an integration test target (they take ~seconds to run).
2020-10-19 22:16:59 -07:00
Sean Silva 06a8ba6900 [RefBackend] Use more idiomatic bufferize pattern for TCP.
The time has come for BypassShapes/LowerShapedResultsToMemref to go away :(
For the reference backend, being consistent with upstream conventions is
the name of the game now.

This is a step down in a number of ways, e.g. test clarity and
separation of concerns. But it is fewer files and fewer tests, and
*does* address the "TODO: This is really fragile". It also eliminates two
more ops from the refback dialect (sadly, they are the
shaped_results/yield that we were getting kind of fond of, but alas).
2020-10-15 20:15:53 -07:00
Sean Silva b6bdc8cc4f [RefBackend] Use upstream BufferizeTypeConverter
Now that it has grown source/target materialization capabilities
(spelled with ops tensor_load/tensor_to_memref), we can use it. We can
also now delete refback.memref_to_tensor/refback.tensor_to_memref.

This is also a first step to reducing the downstream functionality
needed in the refback dialect.
2020-10-15 15:58:51 -07:00
Sean Silva 7edb5f3641 [RefBackend] Rename RefBackend dialect to Refback
I now realize that VerboseCamelCase is not the best choice for dialect
directory/file names and C++ identifiers (take e.g. "Linalg", "Basicpy",
etc. as prior art here; not LinearAlgebra or BasicPython). If I had to
name the convention it seems to be "Shortword" (or of course just
acronym dialects like LLVM, SCF, etc.).

This rename also has the side benefit of differentiating RefBackend
directories, which now refer to the actual backend itself, from
Refback/Refbackrt, which are the dialects which happen to be used by
that backend.
2020-10-08 09:07:00 -07:00
Sean Silva bf99a82832 [RefBackend] Rename Npcomprt dialect to Refbackrt. 2020-10-08 09:07:00 -07:00
Sean Silva 5017430dc7 [RefBackend] Split out RefBackend (refback) dialect from TCP.
This is the first in a patch series that is refactoring the
constellation of things variously called or associated with "E2E",
"RefE2E", "npcomprt", and "TCP" into a more cleanly layered result.

Concretely, this first patch fixes the fact that TCP was basically
acting like a dumping ground needed by the reference backend. This
splits it out, which is fairly mechanical, but touches a lot of lines of
code (basically replacing `tcp` with `refback` and `TCP` with
`RefBackend).

Now, the RefBackend dialect is that dumping ground, which
is slighly better, as it starts allowing TCP to become a nice clean
middle layer that is not related per se to the reference backend.

The previous name RefE2E or "reference e2e flow" was super confusing.
Now that we are seeing more clearly where the "backend" distinction
lies, the [RefBackend] commit tag is born :)
2020-10-07 10:29:48 -07:00
Stella Laurenzo 3d74337be0 Add a torch.kernel_call op and associated predicates. 2020-09-29 15:10:38 -07:00
Stella Laurenzo 2c9ca79c89 Add boilerplate for Torch dialect. 2020-09-28 15:26:17 -07:00
Sean Silva f9b37c55b7 [RefE2E] Add support for unary ops exp and tanh
This is fairly mechanical.
2020-09-24 18:41:30 -07:00
Sean Silva c69e9fabc5 [RefE2E] Add support for "max".
This cleans up the lowering pipeline to easily allow extending to
multiple binary ops. It looks fairly repetitive at multiple levels, but
I don't want to prematurely generalize. I think that in principle we
could derive a large swatch of TCF + TCP from a single linalg-style
specification. Another direction is to use an OpInterface (something
like "buildLinalgGenericBody"). I'm keeping my eye on it.

In a subsequent commit, I'll mechanically add a set of binary ops
modeled off of the std arithmetic ops.
2020-09-22 18:38:32 -07:00
Sean Silva 276f5b80ea [RefE2E] Add assemblyFormat for TCF and TCP ops and tidy up. 2020-09-18 15:03:53 -07:00
Sean Silva d8675f8ad2 [RefE2E] Add support for matmul.
I'm pretty happy with how this turned out. It looks pretty much like it
should -- one change at each layer. This particular op bottoms out on
linalg which takes care of the rest.

- Add tcf.matmul
- Add tcp.matmul
- Add TCF->TCP lowering
- Add tcp.matmul shape transfer function (BypassShapes.cpp)
- Add tcp.matmul -> linalg.matmul lowering (LowerShapedResultsToMemref.cpp)
- Add support to LowerShapeConstraints for lowering the new
shape.cstr_require

This matmul op is pretty limited in its capabilities. There is no
batching and no multidimensional contraction. Certainly more design work
will be needed to find the right abstractions that aren't too general
but also help to canonicalize many cases from frontends. This is mainly
to show that adding a new op needn't be very "scary" once we have the
e2e infra in place.

Also,
- this clears out some exploratory cruft from the TCF dialect now that
this is starting to become real.
2020-09-18 11:31:01 -07:00
Sean Silva 75f57b461e
Totally rework RefE2E tensor to memref flow. (#42)
This now gets the overall "RefE2E" compilation stack to a point that I'm
fairly happy with. We simplify it by mostly embracing the "descriptor"
view of the world.

The overall flow is best understood by reading through the
createE2ELoweringPipeline function in lib/E2E/E2E.cpp
That function creates a pass pipeline that lowers from "TCF" (which is
~numpy level of abstraction) down to LLVM IR.

A brief high-level summary of what happens there:

1. TCF to TCP conversion. This involves reifying error handling in the
form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir

2. Lowering shape constraints. This converts shape constraints into
eager error-handling code. See test/E2E/lower-shape-constraints.mlir
This pass will soon go upstream.
Because this lowers to std.assert, some later passes like
LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this
through e2e.
See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test
that properly aborts in case of an error.

3. Lowering tensors to memrefs. This is done via a series of passes
rather than an single mega conversion. Unlike the previous code that
mixed in the npcomprt ABI stuff here, it's now a very clean "pure
memref" conversion.
See test/E2E/lower-*-to-memref.mlir and
lib/E2E/TensorToMemref/
Most of the changes are concentrated here.

4. As part of the above, we use the upstream ConvertShapeToStandard for
lowering shapes.

5. We lower linalg to loops and lower loops to CFG using upstream
passes.

6. Rewrite the "ABI" boundaries of the program to npcomprt data
structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and
how global tensor constants are represented. One of the major
improvements in this commit is that now it's a very clean rewrite that
just replaces memrefs on ABI boundaries with !npcomprt.tensor (before
there was a get_extent function that is not needed).
See test/E2E/lower-to-npcomprt-abi.mlir

7. Lower to LLVM with upstream mlir patterns + some patterns for the
npcomprt lowerings.

One aspect here that is still a remnant of a non-descriptor-based tensor
to memref flow is the BypassShapes + LowerShapedResultsToMemref.
BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results
(basically a "tie_shape" kind of op), and then
LowerShapedResultsToMemref uses those annotations to allocate output
buffers while lowering the "tensor compute ops". Note that there are
very few "tensor compute" ops currently supported (tcp.add +
tcp.broadcast_to), so we just hardcode them in both passes.
Realistically, I expect this to go away as we fully embrace the
descriptor-based approach for simplicity, so don't look too deep into
it.
2020-09-16 17:31:40 -07:00
stephenneuendorffer bb668e6e26
Add ATen Dialect (#16)
This patch adds a dialect intended to be used as a frontend dialect
to facilitate lowering from "A Tensor Library" in torch/pytorch.

This patch includes several passes that are useful in conjuction with the
dialect:

--aten-layer-name: Generates layer names for each operation, which are not
  present in the original pytorch.
--aten-to-std: Lower the ATen dialect into standard dialect function calls.
--return-elimination-pass: convert functions (primarily the toplevel function)
  to pass return values by reference.  This simplifies pytorch integration.
--aten-op-report: generate a textual report about the model
--liveness-report

Future patches will implement actual integration with the pytorch jit to
intercept and generates MLIR in this dialect, then lower the resulting MLIR
into function calls through aten-layer-name -> aten-to-std ->
return-elimination -> std-to-llvm. The result would then jitted using the LLVM
jit, linked against a runtime library which makes calls back into pytorch to
implement all the layers.

Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>

Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>
2020-08-12 19:28:04 -07:00
Sean Silva e228aa4b11 npcomprt: add support for constants
- create tcp.global + tcp.get_global_memref
- create npcomprt.global + npcomprt.get_global
- LLVM lowering for new npcomprt ops
- Runtime:
 - GlobalDescriptor struct emitted by LLVM lowering
 - implement __npcomp_compiler_rt_get_global

Also,
- cleanly isolate all runtime data structure definitions shared by the
compiler and runtime into lib/runtime/CompilerDataStructures.h
2020-07-10 17:31:24 -07:00
Stella Laurenzo efbcf0aa44 Add NumpyPublicFunctionsToTensor pass.
* Rewrites public function signatures to operate on tensors (vs ndarray).
* Most of our backends presume immutable tensors at public function boundaries.
2020-07-08 22:51:54 -07:00
Sean Silva b4f0cea8fa Rework e2e flow to use new "npcomprt"
This ~totally reworks the existing "runtime" stuff to be more
principled and usable, such as from Python. It's still not fully
production-quality, mainly in the department of memory management (e.g.
it currently leaks memory; we need to figure out "who frees memrefs" +
the analysis and transformation needed to do that (maybe use upstream
buffer allocation pass?)).

The user API is in include/npcomp/runtime/UserAPI.h, though
include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper.

The stuff under {include,lib}/runtime is totally firewalled from the
compiler and tiny (<6kB, though no attention has gone into optimizing
that size). For example, we don't link in libSupport into the runtime,
instead having our own bare bones replacements for basics like ArrayRef
(the JITRuntime helps with bridging that gap, since it *can* depend on
all common LLVM utilities).

The overall features of npcomprt is that it exposes a module that
with multiple function entry points. Each function has arguments and
results that are tensor-valued, and npcomprt::Tensor is the runtime type
that is used to interact with that (and a npcomprt::Ref<T>
reference-counting wrapper is provided to wrap npcomprt::Tensor in the
common case).

From an implementation perspective, an npcomprt module at the
LLVM/object/binary level exposes a single module descriptor struct that
has pointers to other metadata (currently just a list of function
metadata descriptors). All interactions with the npcomp runtime are
keyed off of that module descriptor, including function lookups and
dispatching. This is done to dodge platform ABI issues and also allow
enough reflection to e.g. verify provided arguments.

Most of the compiler-side work here was in LowerToNpcomprtABI and
LowerToLLVM.

Also,
- Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting
annoying to type the underscores/caps.
- misc improvements to bash_helpers.sh
2020-07-08 19:36:19 -07:00
Stella Laurenzo 5aa2f0f9f6 Add a trivial copy elision canonicalization on ndarray->tensor.
* This elides the very common code the compiler adds for chaining otherwise tensor-related numpy ops together.
* More aggressive canonicalizations would require more advanced analysis.
2020-07-05 18:09:43 -07:00
Stella Laurenzo fae15ec5e7 Allow the ndarray type to carry a shape. 2020-07-05 17:34:03 -07:00
Stella Laurenzo 046751254f Refactor old tracing tests and remove deprecated ops.
* Old doctests to run under lit.
* Old custom filecheck tests -> pytest directory (under lit).
* Rename some old ufunc ops in the tracer.
2020-06-29 16:19:03 -07:00
Stella Laurenzo b2708e4687 Add test case for !numpy.ndarray. 2020-06-28 17:41:21 -07:00
Stella Laurenzo 7bd5733d38 Add "template function" ops and importer code.
* This starts to lay down the infra for reasoning about calls
* Adds the importer code to generate IR for function calls of compiler recognized static functions.
2020-06-26 18:36:36 -07:00
Stella Laurenzo 529873d13c Wire up IREE compilation and runtime in a new backend test.
* Adds python bindings for invoking flow, HAL, and VM lowering pipelines.
* Adds pythong bindings for translating to VM module flatbuffer.
* Adds a new backend_test/iree directory and configure lit to find the IREE python rt bindings.
* Open code a simple_invoke.py that exercises the whole pipeline (need real APIs for a lot of this).
* Fails when invoking the function because I never implemented argument marshaling for scalars :(
* Plenty of stuff to do tomorrow.
2020-06-19 00:30:34 -07:00
Sean Silva e8b1a07ef4 Initial NpcompRt (npcomp_rt) dialect boilerplate. 2020-06-01 19:07:53 -07:00
Sean Silva 1b48d0d80b Remove the present tcp.island.
The idea was half-baked and after some deep thought felt like a solution
looking for a problem. What we had here (and is removed in this patch)
just wasn't pulling its weight.

I cannot think of anything we would want to do with tcp.island as it is
removed here beyond just sinking and merging them within a basic block,
such that the witness argument is kind of pointless (only matters for
hoisting).

TCP compute ops like tcp.add and tcp.broadcast_to have the strong
invariant of "pure or undefined behavior", which means they are always
safe to sink. The island concept as removed here conferred no benefit.

Also, I'll note that "islands" are a trick you can only play once in a
system (unless they strictly nest). I have some early-stage thoughs on
having an island concept that helps with modeling tensor shapes
robustly which seems promising (the island would serve a similar role as
tie_shape).
2020-05-14 15:19:37 -07:00
Sean Silva e29aef855b Initial TCF/TCP E2E seed.
Very much WIP.

This is enough to get tcf.add down to approximately the "linalg.generic
on buffers" level of abstraction. (but there are nuances)
2020-05-08 20:20:41 -07:00
Stella Laurenzo bc5ef81d68 Add basicpy.SlotObject type and ops to create/index into it.
* This is intended to provide low-level modeling for built-in objects.
* It is now possible to trace slice tuples (which are tuples of NoneType|EllipsisType|SlotObjectType<slice, ...>).
2020-05-05 18:16:01 -07:00
Stella Laurenzo d3632af675 Add !numpy.any_dtype dialect type. 2020-04-29 18:20:42 -07:00
Stella Laurenzo b4425fe1d2 Add numpy.ufunc_call op. 2020-04-29 17:49:56 -07:00
Stella Laurenzo e845db8a20 Add builtin_ufunc and generic_ufunc ops. 2020-04-28 23:51:54 -07:00
Stella Laurenzo 953ef89a30 Add npcomp-opt and lit runner. 2020-04-26 17:55:15 -07:00