Commit Graph

3120 Commits (b790061b69d05dab503ec90ad2b0ed333dd9b62f)
 

Author SHA1 Message Date
Andrew Woloszyn 72e38dcbbc
Add support for the onnx.SequenceConstruct op. (#3316) 2024-05-17 22:51:28 +05:30
Sambhav Jain 706efaf57c
[Bazel] Add SparseTensorDialect deps (#3357)
Required after https://github.com/llvm/torch-mlir/pull/3318 landed.

GHA:
https://github.com/sjain-stanford/torch-mlir/actions/runs/9120607050/job/25078271790
2024-05-16 21:44:46 -07:00
Suraj Sudhir cba91a9b96
[ONNX][TOSA] Adds ONNX to TOSA e2e tests (#3358)
- Refactors OnnxBackend to be generic and consume any Torch backend.

---------

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2024-05-16 21:44:26 -07:00
Xinyu Yang 28193fd985
[Stablehlo]index type use i64 (#3354) 2024-05-16 15:33:23 +08:00
Xinyu Yang 7faba75696
[Torch] Decompose AtenMaskedScatterOp (#3353)
Co-authored-by: Yuanqiang Liu <liuyuanqiang.yqliu@bytedance.com>
2024-05-16 15:27:25 +08:00
Xinyu Yang a9edefb3cf
[Torch] Fix AtenSliceTensorOp::fold (#3345) 2024-05-16 11:42:43 +08:00
penguin_wwy 405f884522
[stablehlo] verify stablehlo backend contract (#3338) 2024-05-16 11:03:43 +08:00
Suraj Sudhir 0ca88028cd
[FxImporter][TOSA] Enable FxImporter to TOSA e2e tests (#3349)
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2024-05-15 14:37:30 -07:00
Peiming Liu ccb772cd0f
[sparse] propagate sparsity properly when decompose torch operations. (#3318) 2024-05-15 10:09:27 -07:00
Aaron St George ba32b9cee7
Don't fold `aten.clone` if result isn't same type as input (#3347)
Similar to https://github.com/llvm/torch-mlir/pull/2824, we were seeing
some assertion failures after the addition checks around folders were
tightened up in LLVM: https://github.com/llvm/llvm-project/pull/75887 .
This PR essentially moves the logic that used to be applied at the LLVM
level into the folder, which seems to be the suggested fix.
2024-05-16 00:07:45 +08:00
Yuanqiang Liu 5928f68e60
[Stablehlo] refactor amax, max, max.dim's lowering to stablehlo (#3348)
* not to decompose `aten.amax` on `stablehlo` backend. Because it could
be lowering to `stablehlo.reduce` directly.
* lowering `aten.max.dim` to `stablehlo.reduce apply max` when
`AtenMaxDimOp.getIndices()` doesn't have users. It's more simple.
2024-05-16 00:05:19 +08:00
Xinyu Yang 6b95dd461d
[Torch] Fix PrimNumToTensorScalarOp::fold (#3339)
In constant folding progress, a new constant op will be created
according to the origin op's result type.

See the code in TorchDialect.cpp.

```cpp
Operation *TorchDialect::materializeConstant(OpBuilder &builder,
                                             Attribute value, Type type,
                                             Location loc) {
  if (auto integerType = dyn_cast<Torch::IntType>(type))
    return builder.create<Torch::ConstantIntOp>(loc, cast<IntegerAttr>(value));

  if (auto floatType = dyn_cast<Torch::FloatType>(type))
    return builder.create<Torch::ConstantFloatOp>(loc, cast<FloatAttr>(value));

  if (auto numberType = dyn_cast<Torch::NumberType>(type)) {
    if (auto floatValue = dyn_cast<mlir::FloatAttr>(value)) {
      return builder.create<Torch::ConstantNumberOp>(loc, floatValue);
    } else if (auto intValue = dyn_cast<mlir::IntegerAttr>(value)) {
      return builder.create<Torch::ConstantNumberOp>(loc, intValue);
    }
  }

  if (isa<Torch::BoolType>(type)) {
    return builder.create<Torch::ConstantBoolOp>(loc, cast<IntegerAttr>(value));
  }

  if (isa<Torch::NoneType>(type))
    return builder.create<ConstantNoneOp>(loc);

  if (auto stringAttr = dyn_cast<StringAttr>(value))
    return builder.create<ConstantStrOp>(loc, stringAttr);

  if (auto elementsAttr = dyn_cast<ElementsAttr>(value)) {
    // Only !torch.vtensor can be constant folded. !torch.tensor has
    // non-trivial aliasing semantics which prevent deduplicating it.
    assert(isa<ValueTensorType>(type) && "should be a vtensor type!");
    return builder.create<ValueTensorLiteralOp>(loc, elementsAttr);
  }

  return nullptr;
}
```
So when the op has a tensor result type, it must be "ValueTensorType"
due to the **assert** statement. However, many fold methods in
TorchOps.cpp only have a judgment of "BaseTensorType".
2024-05-15 20:54:19 +08:00
Aart Bik 44fa6c3afd
[torch-mlir][sparse] sparse diagonal feature scaling test (#3344) 2024-05-14 12:13:54 -07:00
Peiming Liu 8e74d64e8f
[sparse] convert to sparse before any use in sparse test. (#3337) 2024-05-14 09:10:36 -07:00
zjgarvey 73b3065a94
[ONNX] Reduces Transpose Opset Version (#3302)
As mentioned in issue #3290 , the difference between onnx.Transpose in
versions 1 and 13 is minimal, and therefore should be supported with the
same conversion pattern.
2024-05-14 21:38:56 +05:30
NeverRaR 26b78285bf
[MLIR][ONNX] Add OnnxToTorch support for GlobalMaxPool Op (#3232)
https://github.com/nod-ai/SHARK-Turbine/issues/658

---------

Co-authored-by: root <root@i32b01216.sqa.eu95>
2024-05-14 15:55:39 +05:30
Archana Ramalingam 20f312853c
[MLIR][ONNX] Add OnnxToTorch support for ReduceLogSumExp Op (#3201)
This commit adds the OnnxToTorch support for ReduceLogSumExp op
2024-05-14 09:54:26 +05:30
Aart Bik 667dfcbc5a
[torch-mlir][sparse] enable test on ReLu (#3336)
Downstream MLIR sparsifier has some (rudimentary) support for ReLU now,
and this test can now be enabled with correct end-to-end behavior.

Also see discussion at:

https://discourse.llvm.org/t/min-max-abs-relu-recognition-starter-project/78918
2024-05-13 15:34:26 -07:00
Aart Bik 08355be5d0
[torch-mlir] bump to llvm@70e227a404e51f9248c7ad5d79953805b2afacb4 (#3335) 2024-05-13 14:52:25 -07:00
zjgarvey 911e723581
Expands Q Commuting Ops (#3332)
After running the model tests in SHARK-TestSuite, I noticed a few model
failures due to half-fusion.

Notably, RDN_pytorch_vaiq_int8 had a depth=5 convolution chain with
multiple AtenViewOp's.
2024-05-13 11:01:53 -07:00
penguin_wwy 20d4d16d32
[FxImporter] Add an e2e test example for FxImporter (#3331) 2024-05-14 00:45:19 +08:00
zjgarvey 75d1d72059
Generalize Operand Quantization in FuseQuantizeOps (#3327)
This change enables more customization with operand quantization, and
generalizes the patterns QuantizeOperands and QuantizeTransposeOperands
to QuantizeOperandsPastCommutingOps.

This allows for passing quantization through operations which are
functionally unaffected by quantization, such as view-like ops. The
purpose of this change is to address a myriad of quantization issues
seen in quantized onnx models that have some reshape-like operations
sandwiched in between a dequant and something like a matmul (whose other
operand is immediately quantizable).
2024-05-12 20:49:59 -07:00
Yuanqiang Liu 0b7cbf5e60
[Stablehlo] fix aten.randn's lowering with f32 element type (#3329) 2024-05-11 17:40:04 +08:00
Yuanqiang Liu 5f7cb9e253
[Stablehlo] lowering aten.randn & aten.normal_functional to mhlo.rng … (#3328)
…NORMAL

* split lowering of uniform, randn, normal from Basic.cpp into Rng.cpp
2024-05-11 15:33:37 +08:00
Stella Laurenzo 00efec0b73
[linalg] Implement strict mode lowering for aten.view. (#3319)
* Enables assume_strict_symbolic_shapes on fx_importer imported
programs, indicating strict shape semantics.
* Reworks the view->reshape lowering to take advantage of strict mode
and do one of:
  * Collapse to 0D
  * Flatten/Unflatten when there is an inferred dim.
  * Fallback to tensor.reshape
* Splits some test cases up and adds an attribute to control the old
pattern (so new corners can be tested in strict mode in isolation).
* Dynamic inferred mode needs upstream work to generalize expand_shape
(so that case is suppressed here).
* Deletes the assert from the existing tensor.reshape lowering if strict
shape mode is enabled (since the condition it is dynamically asserting
cannot happen).
2024-05-10 13:45:50 -07:00
Andreas Falkenberg adafd51823
[onnx] Gridsampler addition of nearest mode (#3320)
Added nearest neighbor selection for onnx.Gridsampler
2024-05-10 11:42:10 -07:00
jinchen 4b24909427
Add attributes support for onnx cumsum op (#3241) 2024-05-11 02:09:01 +08:00
NeverRaR 1d4859699b
MaxPool1d lowering to linalg (#3295)
Co-authored-by: root <root@i32b01216.sqa.eu95>
2024-05-10 22:05:26 +05:30
Angel Zhang 261074f594
[ONNX] Handle one-input case for Min ONNX operator (#3326)
This commit handles the one-input case for the "Min" ONNX operator. A
new unit test has also been added.
2024-05-10 22:04:03 +05:30
penguin_wwy be20db0a0e
[NFC] Delete the deprecated example cases (#3323) 2024-05-11 00:28:58 +08:00
Vivek Khandelwal 10db310460
build: manually update PyTorch version (#3291)
Set PyTorch and TorchVision version to nightly release 2024-05-05.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-10 21:45:06 +05:30
Angel Zhang 7c289d9522
[ONNX] Handle one-input case for `onnx.Max` operator (#3325)
This commit handles the one-input case for the "Max" ONNX operator. A
new unit test has also been added.
2024-05-10 08:58:46 -07:00
Angel Zhang 2c9c763191
Update development.md (#3314)
Add a command for installing the `python-dev` package

---------

Co-authored-by: Jakub Kuderski <kubakuderski@gmail.com>
2024-05-10 10:39:13 -04:00
penguin_wwy e0a87e543e
[NFC] Standardize the std::is_same competime expression (#3321) 2024-05-10 17:07:37 +08:00
Peiming Liu 2c22087cab
[sparse] match fx node using target name instead of variables name (#3315) 2024-05-09 12:34:14 -07:00
penguin_wwy 64b59c7fc3
[FxImporter] Eliminate the dependency on the refinement pass (#3309) 2024-05-10 02:44:36 +08:00
penguin_wwy afe87d62b4
[Linalg] [Stablehlo] Promote type for compare scalar op (#3306) 2024-05-10 02:20:06 +08:00
Aart Bik 97a822de0a
[torch-mlir][sparse] minor tweaks in sparse tests (#3311)
(1) test full pytorch output for eltwise
(2) use "random" input for LIF, to get general sparse tensor 
(3) introduce way to get true sparsity into network (needs backend fix
first)
2024-05-09 10:03:25 -07:00
Aart Bik a033bbfe6c
[torch-mlir][sparse] recognize to_dense primitive (#3308)
also maps simply to sparse_tensor.convert
the sparsity types do the rest!
2024-05-08 22:50:17 -07:00
Aart Bik 89bb7404c1
[torch-mlir][sparse] add a true network to our NN tests (#3305)
Objective: make the to_sparse work end-to-end!
2024-05-08 21:18:42 -07:00
Peiming Liu cff144b3ac
[sparse] fix double free due to incompatibility between buffer-deallo… (#3303)
…cation and sparse tensors.

**NOTE**: This PR _doges_ the issue in buffer-deallocation pass instead
of resolving it. In the future, we need to fix the bug in
buffer-deallocation pass when handling code generated by sparse
compiler.
2024-05-08 21:18:17 -07:00
Yuanqiang Liu 5213557b87
[Stablehlo] fix lowering gelu(x, tanh) (#3307)
* lowering gelu("none") to erf
* lowering gelu("tanh") to tanh
2024-05-09 11:39:13 +08:00
penguin_wwy 0f0f57c960
[Linalg] Refactor compare scalar op (#3294) 2024-05-09 10:40:19 +08:00
Aart Bik c4b28e8d9f
[torch-mlir][sparse] test for sparse "activation" (#3304)
Example of introducing sparsity into the forward pass. With a bespoke
propagation (but upstream PyTorch will support this).
2024-05-08 19:01:24 -07:00
aldesilv ec6d7aa5d2
OnnxToTorch lowering resize op (#3013)
https://github.com/nod-ai/SHARK-Turbine/issues/358
adds a lowering from onnx to linalg for bilinear and nearest resize with
support for using scales or sizes to get resize shape. uses coordinate
transform half pixel for bilinear mode and asymmetrical for nearest
mode. See
https://github.com/onnx/onnx/blob/main/docs/Operators.md#Resize. Added
two passes -- one for bilinear and the other for nearest.
2024-05-08 21:35:03 +00:00
Benoit Jacob bce800a3f4
Integrate llvm-project at dabdec1001dc368373dd581cf72f37a440873ce3 (#3300)
Co-authored-by: Jacques Pienaar <jpienaar@google.com>
2024-05-08 14:43:06 -04:00
zjgarvey 0abc5868b5
[ONNX] Enables data propogation for onnx shape inference (#3280)
This small change seems to dramatically improve shape inference for
complex models, and consequently, improves onnx importer reliability.
2024-05-08 09:29:23 -07:00
Jiawei Wu 346a536c9f
[Torch Dialect] decompose all index_put-like op to aten.index_put.hacked_twin for stricter semantics (#3071)
This PR decomposes all index_put-like op to aten.index_put.hacked_twin for stricter semantics, i.e., no None index in indices argument.
2024-05-08 22:44:57 +08:00
Xinyu Yang abef114c0c
[torch] emit aten.Softshrink and aten.Hardshrink (#3248)
as title
2024-05-08 15:20:45 +08:00
Aart Bik c77f3b559a
[torch-mlir][sparse] add simple sparsity "propagation" rules (#3297)
While waiting for the full resolution of feature request
https://github.com/pytorch/pytorch/issues/117188
(which will propagate sparsity the right way in upstream PyTorch for all
FX Graphs), this minor change allows us to start testing sparsity
"within" a network, rather than just the parameters. Feel free to add
your own rules for testing (but within reason for what will be done
upstream).

Note, two TODOs need to be addressed to work around some pending issues
to make the JIT execution work.
2024-05-07 15:27:36 -07:00