Commit Graph

70 Commits (bf99a82832f84ccc1d526e8d50423ae85b699524)

Author SHA1 Message Date
Sean Silva bf99a82832 [RefBackend] Rename Npcomprt dialect to Refbackrt. 2020-10-08 09:07:00 -07:00
Sean Silva 03846ed8e7 Rename a couple CMake targets.
NPCOMPFoo to NPCOMPFooDialect for consistency with others.
2020-10-07 10:29:48 -07:00
Sean Silva 5017430dc7 [RefBackend] Split out RefBackend (refback) dialect from TCP.
This is the first in a patch series that is refactoring the
constellation of things variously called or associated with "E2E",
"RefE2E", "npcomprt", and "TCP" into a more cleanly layered result.

Concretely, this first patch fixes the fact that TCP was basically
acting like a dumping ground needed by the reference backend. This
splits it out, which is fairly mechanical, but touches a lot of lines of
code (basically replacing `tcp` with `refback` and `TCP` with
`RefBackend).

Now, the RefBackend dialect is that dumping ground, which
is slighly better, as it starts allowing TCP to become a nice clean
middle layer that is not related per se to the reference backend.

The previous name RefE2E or "reference e2e flow" was super confusing.
Now that we are seeing more clearly where the "backend" distinction
lies, the [RefBackend] commit tag is born :)
2020-10-07 10:29:48 -07:00
Stella Laurenzo 3d74337be0 Add a torch.kernel_call op and associated predicates. 2020-09-29 15:10:38 -07:00
Stella Laurenzo 2c9ca79c89 Add boilerplate for Torch dialect. 2020-09-28 15:26:17 -07:00
Sean Silva 6ea37cfed6 Bump llvm-project to 9ed1e5873c19eb817fb9e36d0262c7effee5d35e
Date:   Fri Sep 18 13:55:52 2020 -0700

- Update to linalg syntax
- New generated builders are better. Custom builder for
tcp.shaped_results is now redundant.
2020-09-28 09:34:44 -07:00
Sean Silva 75f57b461e
Totally rework RefE2E tensor to memref flow. (#42)
This now gets the overall "RefE2E" compilation stack to a point that I'm
fairly happy with. We simplify it by mostly embracing the "descriptor"
view of the world.

The overall flow is best understood by reading through the
createE2ELoweringPipeline function in lib/E2E/E2E.cpp
That function creates a pass pipeline that lowers from "TCF" (which is
~numpy level of abstraction) down to LLVM IR.

A brief high-level summary of what happens there:

1. TCF to TCP conversion. This involves reifying error handling in the
form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir

2. Lowering shape constraints. This converts shape constraints into
eager error-handling code. See test/E2E/lower-shape-constraints.mlir
This pass will soon go upstream.
Because this lowers to std.assert, some later passes like
LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this
through e2e.
See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test
that properly aborts in case of an error.

3. Lowering tensors to memrefs. This is done via a series of passes
rather than an single mega conversion. Unlike the previous code that
mixed in the npcomprt ABI stuff here, it's now a very clean "pure
memref" conversion.
See test/E2E/lower-*-to-memref.mlir and
lib/E2E/TensorToMemref/
Most of the changes are concentrated here.

4. As part of the above, we use the upstream ConvertShapeToStandard for
lowering shapes.

5. We lower linalg to loops and lower loops to CFG using upstream
passes.

6. Rewrite the "ABI" boundaries of the program to npcomprt data
structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and
how global tensor constants are represented. One of the major
improvements in this commit is that now it's a very clean rewrite that
just replaces memrefs on ABI boundaries with !npcomprt.tensor (before
there was a get_extent function that is not needed).
See test/E2E/lower-to-npcomprt-abi.mlir

7. Lower to LLVM with upstream mlir patterns + some patterns for the
npcomprt lowerings.

One aspect here that is still a remnant of a non-descriptor-based tensor
to memref flow is the BypassShapes + LowerShapedResultsToMemref.
BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results
(basically a "tie_shape" kind of op), and then
LowerShapedResultsToMemref uses those annotations to allocate output
buffers while lowering the "tensor compute ops". Note that there are
very few "tensor compute" ops currently supported (tcp.add +
tcp.broadcast_to), so we just hardcode them in both passes.
Realistically, I expect this to go away as we fully embrace the
descriptor-based approach for simplicity, so don't look too deep into
it.
2020-09-16 17:31:40 -07:00
Marius Brehler d62f8227c2
Bump LLVM to @7d1ed69 and fix namespace handling changed upstream.
* Bump LLVM to llvm/llvm-project@7d1ed69
* Bump MLIR-HLO to tensorflow/mlir-hlo@1880f87
* Adopt to MLIR's changed namespace handling
2020-09-16 15:52:15 -07:00
Marius Brehler 124bc65a70 Register dialects in ATen lowering pass 2020-09-09 21:55:17 -07:00
Stella Laurenzo 81dd571c23 Integrate upstream LLVM at 8d9c13f37d2081c11186718ae8b5aef8b507d152.
* mlir-hlo: 062a3ac4a0671d15b5199ed2cd3a9ce02a5bf077

Fixes:

* numInputs() just returns an int instead of requiring a call to .getLimitedValue()
2020-09-08 20:34:31 -07:00
Stella Laurenzo 97d83f786a Bump submodule versions.
* llvm-project: b5924a8e27536d19dd5c4d302db29fb6163d5faa
* mhlo: 848ca244d20f045b7921da55a98a04d95ef94f0e
* Multiple breakages that need to be fixed.

Fixes:
* Refactor dialect registration
* Remove all kindof methods (Casting functionality has been added upstream and is implicitly
available, see https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types/1547.)
* Update dialect registration to comply with https://reviews.llvm.org/D85495.
* Remove type kinds and update some changed dialect signatures.
* Upgrade ATen dialect to match upstream needs.
  * Move dialect registration to tablegen.
  * Register the ListType in tablegen.
  * Change dialect initialization signature.
* Use TypeSwitch in MlirIr location printer.
* Remove global registry depends from npcomp-opt.
* Change LowerToLLVM to pass an MLIRContext vs an LLVMDialect for type creation.
* Remove dep on MLIREDSCInterface that is removed upstream.
* Thread through the DialectRegistry for opt and python-like tools.
* Modernize pass registration (This was forced because the GEN_PASS_REGISTRATION code now generates inline functions vs literal pass registration statements)

Co-authored-by: Marius Brehler <marius.brehler@iml.fraunhofer.de>
2020-09-08 13:26:42 -07:00
Stella Laurenzo fc4f374345 Format sources. 2020-08-27 14:47:49 -07:00
Stella Laurenzo 69cda404ef NFC: Fix extra namespace declaration.
* Was causing build break on GCC9.
2020-08-20 16:22:41 -07:00
stephenneuendorffer bb668e6e26
Add ATen Dialect (#16)
This patch adds a dialect intended to be used as a frontend dialect
to facilitate lowering from "A Tensor Library" in torch/pytorch.

This patch includes several passes that are useful in conjuction with the
dialect:

--aten-layer-name: Generates layer names for each operation, which are not
  present in the original pytorch.
--aten-to-std: Lower the ATen dialect into standard dialect function calls.
--return-elimination-pass: convert functions (primarily the toplevel function)
  to pass return values by reference.  This simplifies pytorch integration.
--aten-op-report: generate a textual report about the model
--liveness-report

Future patches will implement actual integration with the pytorch jit to
intercept and generates MLIR in this dialect, then lower the resulting MLIR
into function calls through aten-layer-name -> aten-to-std ->
return-elimination -> std-to-llvm. The result would then jitted using the LLVM
jit, linked against a runtime library which makes calls back into pytorch to
implement all the layers.

Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>

Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>
2020-08-12 19:28:04 -07:00
stephenneuendorffer 44af7a6d30
[cmake] Updates for basic shared library support (#7)
Mostly this is CMake cleanup.  Several library dependencies are missing, which
is often revealed with shared library builds.  Also, it's generally bad to
link directly against LLVM libraries because it fails when using
LLVM_LINK_LLVM_DYLIB.  MLIR will pull in libLLVM.so, and there will be
duplicate linkage with the the explicit libraries.  There may need to be more
refactoring here.
2020-08-05 14:49:18 -07:00
Stella Laurenzo 9d5d802cc8 Fix compilation issues due to llvm-project version bump.
* Redundant infer type implementations removed.
* Update to the linalg GenericOp build calls.
2020-08-01 15:23:57 -07:00
Stella Laurenzo 0356f65dcd Wire through codegen and runtime dependencies.
* Enables e2e test.
* With what I've learned in upstream about test directory layout, I can consolidate most of the separate directories we have for these things. Will do that in a followup.
* Not pleased with the LLVM global initialization depends but serviceable for now.
2020-07-10 22:57:26 -07:00
Stella Laurenzo 9e4a62fc71 Allow JITModule passes to be built separately.
* Re-introduces frontent/backend split.
* Adds a (very) trivial shape refinement pass.
2020-07-10 22:57:26 -07:00
Sean Silva e228aa4b11 npcomprt: add support for constants
- create tcp.global + tcp.get_global_memref
- create npcomprt.global + npcomprt.get_global
- LLVM lowering for new npcomprt ops
- Runtime:
 - GlobalDescriptor struct emitted by LLVM lowering
 - implement __npcomp_compiler_rt_get_global

Also,
- cleanly isolate all runtime data structure definitions shared by the
compiler and runtime into lib/runtime/CompilerDataStructures.h
2020-07-10 17:31:24 -07:00
Stella Laurenzo efbcf0aa44 Add NumpyPublicFunctionsToTensor pass.
* Rewrites public function signatures to operate on tensors (vs ndarray).
* Most of our backends presume immutable tensors at public function boundaries.
2020-07-08 22:51:54 -07:00
Sean Silva b4f0cea8fa Rework e2e flow to use new "npcomprt"
This ~totally reworks the existing "runtime" stuff to be more
principled and usable, such as from Python. It's still not fully
production-quality, mainly in the department of memory management (e.g.
it currently leaks memory; we need to figure out "who frees memrefs" +
the analysis and transformation needed to do that (maybe use upstream
buffer allocation pass?)).

The user API is in include/npcomp/runtime/UserAPI.h, though
include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper.

The stuff under {include,lib}/runtime is totally firewalled from the
compiler and tiny (<6kB, though no attention has gone into optimizing
that size). For example, we don't link in libSupport into the runtime,
instead having our own bare bones replacements for basics like ArrayRef
(the JITRuntime helps with bridging that gap, since it *can* depend on
all common LLVM utilities).

The overall features of npcomprt is that it exposes a module that
with multiple function entry points. Each function has arguments and
results that are tensor-valued, and npcomprt::Tensor is the runtime type
that is used to interact with that (and a npcomprt::Ref<T>
reference-counting wrapper is provided to wrap npcomprt::Tensor in the
common case).

From an implementation perspective, an npcomprt module at the
LLVM/object/binary level exposes a single module descriptor struct that
has pointers to other metadata (currently just a list of function
metadata descriptors). All interactions with the npcomp runtime are
keyed off of that module descriptor, including function lookups and
dispatching. This is done to dodge platform ABI issues and also allow
enough reflection to e.g. verify provided arguments.

Most of the compiler-side work here was in LowerToNpcomprtABI and
LowerToLLVM.

Also,
- Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting
annoying to type the underscores/caps.
- misc improvements to bash_helpers.sh
2020-07-08 19:36:19 -07:00
Stella Laurenzo 5aa2f0f9f6 Add a trivial copy elision canonicalization on ndarray->tensor.
* This elides the very common code the compiler adds for chaining otherwise tensor-related numpy ops together.
* More aggressive canonicalizations would require more advanced analysis.
2020-07-05 18:09:43 -07:00
Stella Laurenzo 504e3c4946 Fixup local ndarray<->tensor transforms to preserve shape.
* Preserving shape across the copy ops makes more thing shaped by default.
* Inference of ndarray types will now preserve the shape when specializing the dtype.
2020-07-05 17:45:45 -07:00
Stella Laurenzo fae15ec5e7 Allow the ndarray type to carry a shape. 2020-07-05 17:34:03 -07:00
Stella Laurenzo 00c791f925 Make common utilities for converting TypeNode <-> IR types.
* Generalizes the conversions from ObjectValueType <-> tensor and ndarray.
* Creates a utility to construct the default type map hook.
2020-07-04 20:33:13 -07:00
Stella Laurenzo 97c92aa264 Remove the existing attached values/ops from CPA types.
This was ad-hoc and needs to be replaced by a more principled track back to the IR.
2020-07-04 17:47:19 -07:00
Stella Laurenzo 48a0b0ec7f NFC: Move CPATypeInference to Typing directory. 2020-07-04 16:56:09 -07:00
Stella Laurenzo 051d088161 NFC: Move CPA typing analysis down a directory. 2020-07-04 16:40:02 -07:00
Stella Laurenzo 6a50efd046 Extend the CPA type inference to work on numpy types/ops.
* Adds an op interface for adding CPA constraints.
* Adds a type conversion hook for handling built-in types (that we can't have adopt our interface).
* Converts tensor<> to object(!Tensor, [e:<type>]) just like NdArray.
* Implement a few numpy ops far enough to do dtype inference for simple sequences.
2020-07-03 18:16:34 -07:00
Stella Laurenzo 34861b18f4 Add NdArray type inference conversion. 2020-07-03 16:38:10 -07:00
Stella Laurenzo 4a2f7c0b5f Add constraint propagation and tracking of node members. 2020-07-03 13:29:52 -07:00
Stella Laurenzo 1a13c38033 More progress on CPA.
* Added transitivity propagation rules.
* Fixed up some copy-n-paste inversions from the old algorithm.
2020-07-02 18:56:05 -07:00
Stella Laurenzo 74b8bed7e3 Unique CPA type and constraints to enable comparison by pointer during propagation. 2020-07-02 17:07:02 -07:00
Stella Laurenzo a257da46e2 Introduce a type interface for mapping to CPA types.
* Currently just simplifies the logic for UnknownType -> TypeVar.
2020-07-02 13:56:27 -07:00
Stella Laurenzo b0604684ba NFC: Move CPA support down into it's own directory. 2020-07-02 11:31:23 -07:00
Stella Laurenzo 92190176fb Add skeleton of pass to do modified PCA type inference. 2020-06-30 20:57:09 -07:00
Stella Laurenzo 046751254f Refactor old tracing tests and remove deprecated ops.
* Old doctests to run under lit.
* Old custom filecheck tests -> pytest directory (under lit).
* Rename some old ufunc ops in the tracer.
2020-06-29 16:19:03 -07:00
Stella Laurenzo 7ca292ade5 Add partial evaluator for explicit numpy ufuncs.
* This enables emission of "numpy.add(a, b)" and several dozen others.
* Will deprecate original ufunc infra in a follow-on.
2020-06-29 15:27:39 -07:00
Stella Laurenzo efe8915901 Add NdArrayType. 2020-06-28 17:37:20 -07:00
Stella Laurenzo 7bd5733d38 Add "template function" ops and importer code.
* This starts to lay down the infra for reasoning about calls
* Adds the importer code to generate IR for function calls of compiler recognized static functions.
2020-06-26 18:36:36 -07:00
Stella Laurenzo 529873d13c Wire up IREE compilation and runtime in a new backend test.
* Adds python bindings for invoking flow, HAL, and VM lowering pipelines.
* Adds pythong bindings for translating to VM module flatbuffer.
* Adds a new backend_test/iree directory and configure lit to find the IREE python rt bindings.
* Open code a simple_invoke.py that exercises the whole pipeline (need real APIs for a lot of this).
* Fails when invoking the function because I never implemented argument marshaling for scalars :(
* Plenty of stuff to do tomorrow.
2020-06-19 00:30:34 -07:00
Stella Laurenzo b21b5322f6 Basicpy conversion to IREE+std skeleton and first conversions.
* Conversions to std for numeric binary expressions, numeric to_boolean, and numeric comparisons.
* Added folders to constant ops to comply with requirements of the pass system.
* Extended the frontend with parameter/result annotation processing for primitives (can specify types for function arguments).
* Added (empty) directory/sources for IREEVM conversions. These are only enabled if IREE is enabled.
2020-06-13 23:45:43 -07:00
Stella Laurenzo 2ba8296151 Add script tools/format_source.sh and run it on all python and c++ sources. 2020-06-13 14:53:54 -07:00
Stella Laurenzo 750541e9a9 Extend type inference so that it works across conditional boundaries.
* The implementation is still limited but gives something to build on.
2020-06-10 21:33:17 -07:00
Stella Laurenzo e3fd22a035 Add a (very) basic type inference pass for basicpy.
For simple programs, this gets us enough typing to lower to real backends.
2020-06-10 19:04:05 -07:00
Stella Laurenzo 3e58d8fe37 Add skeleton of type inference pass. 2020-06-10 14:48:22 -07:00
Stella Laurenzo 432e01fe8f Move Basicpy and Numpy dialect IR to IR/ folder. 2020-06-09 19:22:24 -07:00
Stella Laurenzo 340f109742 Add implicit return and expression statements where the value id discarded. 2020-06-09 18:34:07 -07:00
Stella Laurenzo 85b724e70c Adds ODS and import support for binary_expr and binary_compare ops.
* Currently only supports non-short-circuit comparisons.
2020-06-08 13:46:06 -07:00
Stella Laurenzo 72499e0319 Add bytes constants. 2020-06-07 16:00:29 -07:00