This commit bumps the llvm-project to
813f7c3820.
This commit also updates the usage of `APInt` in `unpack-quant-tensor`
pass by explicitly setting the `implicitTrunc` arg to be `True` whose
default value was changed from True to False here
3494ee9590.
Signed-off-by: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This commit removes the equivalence check for kernel shape and weight
shape from the Onnx.conv lowering since those checks seem to be of no
use (not sure why were they part of the lowering in the first place).
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
- Add `aten.mul.left_t` (+ canonicalizer) to allow simplification of
aten.tile.
- Change syntax of the computation of col2im shape to allow the use of
an already existing canonicalization pattern (for `aten.add.t`) for its
simplification.
- Add `aten.eq.bool` ( + folder) to allow simplification of aten.stft.
- Refactors more "onnx.ReduceXXX" patterns through helper function.
- Fixes bug with iterating unconditionally on `output_dim == 1` during
`dimList` inference.
This change results in passes for the following 11 models:
crossvit_15_240
crossvit_15_dagger_240
crossvit_15_dagger_408
crossvit_18_240
crossvit_18_dagger_240
crossvit_18_dagger_408
crossvit_9_240
crossvit_9_dagger_240
crossvit_base_240
crossvit_small_240
crossvit_tiny_240
---------
Co-authored-by: Vinayak Dev <104419489+vinayakdsci@users.noreply.github.com>
Essentially, as part of my earlier
[change](7f9f99c6f8)
, I didn't consider the `padding` value while erroring out for
unsupported `count_include_pad` during `torch-to-tosa` lowering for
AvgPool2d. The fix captured in this change addresses this. Please see
[issue](https://github.com/llvm/torch-mlir/issues/3862) for more details
on this.
Co-authored-by: Hanumanth Hanumantharayappa <hhanuman@ah-hhanuman-l.dhcp.mathworks.com>
1. adds a lowering for `aten.neg.int` and `aten.remainder.int` to arith.
2. adds a scalarization pattern for `aten.neg` and
`aten.remainder.Tensor` ops.
3. improves folding of `aten.mul.int`
4. adds a scalarization pattern for `aten.to.dtype` which relies on
scalar cast ops and basic C++ casting between `double` and `int64_t`.
5. improves rank-0 case handling for `FoldAtenSplatPattern`
6. removes a bug with `aten.unflatten.int` decomposition incorrectly
generating a constant size int from a dynamic shape.
7. simplifies the dim list for `aten.unflatten.int` ops generated from
the `aten.view` canonicalization in scalarize shapes.
All of these changes were necessary to unblock
<https://github.com/iree-org/iree/issues/18899>.
This commit sets the PyTorch and TorchVision version to nightly release
2024-11-07.
This commit also updates the dtype check for the
`aten.fake_quantize_per_tensor_affine` and
`aten.fake_quantize_per_tensor_affine_cachemask` op since the op now
supports bfloat16 input.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
- Fix aten.rsub.Scalar legalization with appropriate type casting
- Add legalization for aten.clamp.Tensor
- Resolve some unexpected test failures from PyTorch update by adding
legalization for the following ops:
+ aten.avg_pool1d
+ aten.max_pool1d
+ torch.prims.collapse
- Update xfail_sets with new e2e results
- Add new LIT tests to basic.mlir
Change-Id: I9762c7d36ca0b0f75ca68d0c71d7f5d5309a96ad
---------
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
For the op `index_put_`, if accumulate == false, the behavior is
undefined if the indicies aren't unique
(https://pytorch.org/docs/stable/generated/torch.Tensor.index_put_.html).
So, when converting `AtenIndexPutHackedTwinOp` to a TMTensor scatter op,
mark the indices as unique if when `accumulate == false`.
This should have no functional effect (unless users are relying on UB)
and assuming unique indices has the benefit of unlocking better
optimizations in further compiler stages.
Signed-off-by: Ian Wood <ianwood2024@u.northwestern.edu>
In torch.index_put like ops, `values` is only required to be
broadcastable to `input[indices]`, rather than exact dimension match.
This patch fixes the problem by add additional
stablehlo.dynamic_broadcast_in_dim before creating stablehlo.scatter op.
BTW, this patch also enhance the `getBroadcastResultShape` utility in
hlo namespace.
- Add Torch to TOSA legalization for aten.as_strided op
- Update xfail_sets with the following:
+ New aten.as_strided results
+ Changes from this commit:
7f9f99c6f8
+ Failed tests from new PyTorch version update
- Add new LIT test to basic.mlir
Change-Id: I6f471ea116ca47f2bf9537b62950fce75a2c624f
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
1. Clamps OOB start index to 0 in slice folder
2. Adds a more descriptive `emitError` in slice folder if the creation
of the `DenseElementsAttr` would fail due to a bad result shape.
3. Fixes the `onnx.Shape` lowering to default to `inputRank` for `end`
instead of `-1`. When `end==-1` the last element was missing when
slicing.
1. Adds case handling for `aten.slice.tensor` shape inference with
negative strides. This is not technically allowed by native pytorch, but
it is useful for ONNX ingest. We were getting some incorrect shapes for
these negative strided slice ops.
2. Adds scalarization support for ops seen in pytorch pad exports to
ONNX. These are typically `aten.view` `aten.transpose.int` and
`aten.slice.Tensor` with negative strides (and rank 2).
3. Allows view op `self` to be added to the worklist conditionally,
based on whether the view op actually occurs as a middle point in a
shape computation.
The onnx ingest sometimes has poorly propagated shape information. E.g.:
```mlir
...
%9020 = torch.prims.squeeze %9010#1, %9019 : !torch.vtensor<[?,384,1],f32>, !torch.list<int> -> !torch.vtensor<[1,384],f32>
return %9015, %9020 : !torch.vtensor<[1,384],f32>, !torch.vtensor<[1,384],f32>
}
}
```
This occurred at the boundary of the onnx model
`migraphx_bert__bert-large-uncased`. Evidently, the output value tensor
info had more information than could be propagated forward. The
`PrimsSqueeze` lowering was returning a `!torch.vtensor<[?,384],f32>`
which was causing a type mismatch with the `func.return`.
Added lit tests since these scalar operations don't trace well through
the `fx_importer` route.
`XOR` and `NE` are equivalent binary operators, so `aten.ne.bool` is
lowered to `arith.xori`.
The existing TorchToTosa lowering logic for `torch.aten.avg_pool2d`
doesn't handle some unsupported properties well, leading to a silent
wrong answer(SWA) when we go through
`torch-backend-to-tosa-backend-pipeline.` For instance, with the
existing TOSA avgpool2d specification, we can not represent
`count_include_pad` and `divisor_override,` so during TorchToTosa
lowering, we silently ignore these properties which leads to SWA in some
cases—the fix captured in this change errors for unsupported scenarios.
For details on `count_include_pad` and `divisor_override,` please see
the below link.
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
---------
Co-authored-by: Hanumanth Hanumantharayappa <hhanuman@ah-hhanuman-l.dhcp.mathworks.com>
Attention often broadcasts a mask across the batch dimension as masking
is usually performed the same across attention heads. Added this
materialization to the mask dimensions optionally.
# Tracking
[Issue](https://github.com/nod-ai/SHARK-ModelDev/issues/848)
[TorchToLinalg Op
Support](https://github.com/nod-ai/SHARK-ModelDev/issues/347)
# Description
Aten_TrilinearOp is an implementation of a "trilinear einstein sum".
Essentially, just an einsum across 3 tensors.
There are a few inputs:
## Tensor Inputs
- i1, i2, i3 - The three input tensors for the _trilinear op.
## Expands
These inputs allow you to unsqueeze an input tensor at the specified
dims as a pre-processing step to make the shapes compatible for the rest
of the op:
- expand1: List[int], expand2: List[int], expand3: List[int]
## sumdim
- sumdim: List[int] - After applying element wise multiplication, the
values in sumdim denote where to collapse a dimension by summing over it
## unroll_dim
- unroll_dim: int - In the PyTorch implementation, this specifies a
dimension where you could slice the input tensors, multiply and sum
them, then concatenate the results in an output tensor. This complicates
the implementation significantly, but doesn't change the result, so I
opted against it. Along with that, a previously accepted path for
solving this involved reusing the AtenEinsumOp, which also would also
ignore this input.
# Solution
After trying a bunch of more complicated approaches for it, this op
actually ended up being quite simple: [See
_trilinear](https://dev-discuss.pytorch.org/t/defining-the-core-aten-opset/1464)
`_trilinear = (i1.unsqueeze(expand1) * i2.unsqueeze(expand2) *
i3.unsqueeze(expand3)).sum(sumdim)`
Wish I saw this earlier, but watcha gonna do: 🙃
## Not Reusing AtenEinsumOp
Frankly, I found multiple cases where valid inputs would have numerical
mismatches for EinsumOp, even when running tests against EinsumOp
directly. I think it has something to do with the singleton dimensions.
Will need to look into this further, but once I realized the simplified
approach, it appeared to be more reliable and much simpler.
Either way (credit to @zjgarvey), there are improvements to the einsum
op here. When I was originally trying to use the op, intermediate
tensors were being flattened properly, but then its 0th dimension was
being cast from a static dim to a dynamic dim due to integers not
folding correctly in the MLIR. Figured it's worth keeping these
improvements for future reusers of EinsumOp.
# The zero'd out dim "bug"
For some reason, if you specify a dimension in all `expands`,
```i.e.
[expand1=[0], expand2=[0], expand3=[0]],
[expand1=[1], expand2=[1], expand3=[1]]
```
The _trilinear op would specify `0` for that dimension in the output
shape, unless it was also included in `sumdim`. This goes against the
implementation of torch.einsum:
```
>>> a, b, c = [torch.rand(1, 3, 3, 3) for i in range(3)] # Simulate expand at dim=0 for all input tensors
>>> torch.einsum('abcd,abcd,abcd->abcd', a, b, c).shape
torch.Size([1, 3, 3, 3])
```
And is just straight up incorrect mathematically. I considered
"replacing" singleton dims with zeroed out dims, but that seemed like
carrying over a bug. Instead, I included a test for the case, verified
that the singleton dimensions were handled the way that torch.einsum
handles it, instead of torch._trilinear, and xfailed it with a note as
to why.
A non-persistent buffer will not be a part of this module’s
`state_dict`. Hence when setting `experimental_support_mutation=True`
and have non-persistent buffer, the current fx importer will fail to
retrieve a value from `state_dict` and produce `torch.constant.none` to
represent the buffer. This fix get value of non-persistent buffer from
the module's `constants`.
---------
Co-authored-by: Dixin Zhou <dzhou@vdi-ahddp-020.dhcp.mathworks.com>
- Add/Extend Torch to TOSA legalization for the following ops:
+ Add aten.threshold_backward
+ Fix aten.threshold
+ Re-implement aten.broadcast_to using tosa.reshape and tosa.tile
+ Add support for rank 0 index for aten.index_select
+ Fix aten.index_put.hacked_twin
+ Add aten.uniform
+ Add aten.logical_and
- Update xfail_sets.py with new e2e results
- Add LIT tests to basic.mlir for newly added ops
Change-Id: I8910564a049d18293284fe2e55e82bc1d2cf10e3
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
- bumps llvm-project to
6c64c8a6f3
- bumps stablehlo to
6e403b1aa6
- Updates type conversion materialization functions to return Value
after API change in llvm-project.
---------
Signed-off-by: Max Dawkins <max.dawkins@gmail.com>
Removes a boolean variable that is used only for an assertion, and
inlines the condition into the assertion.
Signed-off-by: Max Dawkins <max.dawkins@gmail.com>
This commit sets the PyTorch and TorchVision version to nightly release
2024-10-29.
This commit also fixes the CI failure after this commit
54d9e24013
got merged. The issue was that the CI checks in the PR were run before
the previous roll pytorch update but the PR was actually merged after
the roll pytorch update. Hence, the failure was not caught before
merging the PR.
While exporting the fx_graph through fx_importer for `rrelu` and
`rrelu_with_noise` op for train mode, it decomposes the
`aten.rrelu_with_noise` op based on the PyTorch decomposition which is
the default behavior. However, the decomposition contains an input
mutation specifically here
9bbe4a67ad/torch/_decomp/decompositions.py (L325),
resulting in the runtime failure. This issue would probably be fixed by
https://github.com/pytorch/pytorch/pull/138503. Until then, the failing
tests are added to the xfail set.
Also, after the roll pytorch update following tests started passing for
fx_importer, and fx_importer_stablehlo config.
- "ElementwiseRreluTrainModule_basic"
- "ElementwiseRreluTrainStaticModule_basic"
- "ElementwiseRreluWithNoiseTrainModule_basic"
- "ElementwiseRreluWithNoiseTrainStaticModule_basic"
This commit also updates the dtype check for the `aten.linear` op since
the op now expects both the input tensors to have the same dtype.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
1. Negative indices for tensor indexing is handled by wrapping around
the index values by checking their values at run time. Without the fix,
there was a runtime error.
2. Added a lit test to lock down the behavior.
3. Updated the `xfails_set` for `fx_importer_tosa` config to lockdown
the behavior with e2e test as well.
"THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY."
Compiling with clang 16.0 on macOS I have warnings about incorrect
printf format (see below).
Values to be printed are `int64_t`, but they are printed with `%zu` and
`%ld`, which are not portable way to print this type.
```
<...>/torch-mlir/test/CAPI/torch.c:52:3: warning: format specifies type 'size_t' (aka 'unsigned long') but the argument has type 'int64_t' (aka 'long long') [-Wformat]
52 | DEFINE_CHECK(NonValueTensor)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
<...>/torch-mlir/test/CAPI/torch.c:37:13: note: expanded from macro 'DEFINE_CHECK'
36 | fprintf(stderr, #TTT "Type %s rank: %zu\n", testName, \
| ~~~
37 | torchMlirTorch##TTT##TypeGetRank(TTT##Type)); \
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<scratch space>:78:1: note: expanded from here
78 | torchMlirTorchNonValueTensorTypeGetRank
| ^
<...>/torch-mlir/test/CAPI/torch.c:52:3: warning: format specifies type 'long' but the argument has type 'int64_t' (aka 'long long') [-Wformat]
52 | DEFINE_CHECK(NonValueTensor)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
<...>/torch-mlir/test/CAPI/torch.c:42:15: note: expanded from macro 'DEFINE_CHECK'
41 | fprintf(stderr, #TTT "Type %s pos %d size: %ld\n", testName, i, \
| ~~~
42 | TTT##Sizes[i]); \
| ^~~~~~~~~~~~~
<scratch space>:85:1: note: expanded from here
85 | NonValueTensorSizes
| ^
<...>/torch-mlir/test/CAPI/torch.c:53:3: warning: format specifies type 'size_t' (aka 'unsigned long') but the argument has type 'int64_t' (aka 'long long') [-Wformat]
53 | DEFINE_CHECK(ValueTensor)
| ^~~~~~~~~~~~~~~~~~~~~~~~~
<...>/torch-mlir/test/CAPI/torch.c:37:13: note: expanded from macro 'DEFINE_CHECK'
36 | fprintf(stderr, #TTT "Type %s rank: %zu\n", testName, \
| ~~~
37 | torchMlirTorch##TTT##TypeGetRank(TTT##Type)); \
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<scratch space>:112:1: note: expanded from here
112 | torchMlirTorchValueTensorTypeGetRank
| ^
<...>/torch-mlir/test/CAPI/torch.c:53:3: warning: format specifies type 'long' but the argument has type 'int64_t' (aka 'long long') [-Wformat]
53 | DEFINE_CHECK(ValueTensor)
| ^~~~~~~~~~~~~~~~~~~~~~~~~
<...>/torch-mlir/test/CAPI/torch.c:42:15: note: expanded from macro 'DEFINE_CHECK'
41 | fprintf(stderr, #TTT "Type %s pos %d size: %ld\n", testName, i, \
| ~~~
42 | TTT##Sizes[i]); \
| ^~~~~~~~~~~~~
<scratch space>:119:1: note: expanded from here
119 | ValueTensorSizes
| ^
4 warnings generated.
```
Reports a match failure for the pattern `FullyUnrollPrimLoop` when the
loop op is not in a region defined by a `torch.shape.calculate` op.
This is needed to avoid unrolling prim loops generated by ONNX IR, since
we are applying shape refinement in the
`torch-onnx-to-torch-backend-pipeline` introduced in fa4794d .
See also the discussion in
<https://github.com/iree-org/iree/pull/18867#discussion_r1811101655>
I've upstreamed the necessary quantized linalg Op with the
"channel-first" ordering used by torch
(https://github.com/llvm/llvm-project/pull/107740) for 2d convolution.
This patch changes the lowering for the quantized 2d case of
`aten.convolution` accordingly, which saves three transpositions per
convolution (input, weights, result) and therefore removes the
requirement to try to optimize these away in downstream passes.
The fx tracer does not support tracing "real" quantized tensors
currently. A "real" quantized tensor here means a tensor that is created
using a method like `torch.quantize_per_tensor()` and carries the
quantization parameters (scale, zero_point, scheme) in the object.
However, it seems like the DQ-Q type fake quantizatation is now commonly
used as a high level representation of quantized operators and is only
lowered to native quantized ops (if available) in the respective
hardware backend. Quantization of floating point modules in PyTorch is
recently also performed as a graph transformation after
exporting/tracing the original module.
```python
# Examples of "real"/native quantization
tens = torch.randint(-127, 127, (1,), dtype=torch.int8)
torch._make_per_tensor_quantized_tensor(tens, 1, 0)
# tensor([90.], size=(1,), dtype=torch.qint8,
# quantization_scheme=torch.per_tensor_affine, scale=1.0, zero_point=0)
tens = torch.rand((1,))
torch.quantize_per_tensor(tens, 1, 0, torch.qint8)
# tensor([1.], size=(1,), dtype=torch.qint8,
# quantization_scheme=torch.per_tensor_affine, scale=1.0, zero_point=0)
# Example of DQ/Q quantization
import torch.ao.quantization.fx._decomposed
tens = torch.rand((1,))
torch.ops.quantized_decomposed.quantize_per_tensor.default(tens, 1, 0, -128, 127, torch.int8)
# tensor([1], dtype=torch.int8)
```
This means that a typical import flow for a quantized network
into/through torch-mlir would look like this:
`torch.export() -> quantization transformations on fx graph ->
fx_importer` Where the tensors in the graph are normal float/int tensors
and the quantization parameters are carried by the DQ/Q ops. These kinds
of graphs can be traced without issues.
Currently, our quantized convolution tests use the "real" quantized
tensors. This means that with the retirement of the `jit_ir_importer`,
these tests cannot be imported any longer. In summary, I see no reason
to stick to the "real" quantization in these tests, as both PyTorch 2.0
is using DQ/Q quantization and our linalg backend is also using it.
This patch updates our quantized convolution tests to use the DQ-Q
quantization with the ops from `torch.ops.quantized_decomposed`.
Note: For future reference, there seems to be an ongoing consolidation
of the ops for the DQ/Q scheme on the PyTorch side
(https://github.com/pytorch/ao/issues/986#issuecomment-2390296826).
### new patterns:
1. Propagates `aten.broadcast_to` ops of a single value to an
`aten.full` op
2. Propagates arithmetic operations through a templated class which
associates some tensor arithmetic ops to their integer-scalar
counterparts. These are a major blocker right now, since some models
have a bunch of rank 0 arithmetic being done with tensor ops. See the
lit test for an interesting example that pads an input to the smallest
shape which will become divisible by twelve in `dim0`. If you think this
is convoluted, you haven't been staring at ONNX generated IR long
enough.
3. Adds a stronger folder for `aten.eq.int` to fold `size.int == 0` to
`false`. See the comment in that conversion pattern for more
justification as to why it is acceptable to make this assumption here.
This is another major blocker for models, since this lack of folding
propagates to lack of folding for subsequent `where.self` operations.
4. Add `AtenSqueezeDim` to the existing `FoldAtenSqueezeOpPattern`
### other changes:
1. Add two new anchor ops: `AtenArangeStartStepOp` and
`Torch::RuntimeAssertOp`. I've checked all possible sources of the
runtime assert ops and it is always shape related. The Arange op only
takes int inputs, and these are all shape related. Adds a size check to
getting a list from literal ops.
2. Improved folders for int arithmetic ops to fold some common patterns.
3. adds the ability to get some values from scalar-tensor ops to
getListFromTensor.
4. further cleans up getListFromTensor for readability.
### points to scrutinize:
1. I made the choice to scalarize `div.Tensor` (int dtype result) to
`floordiv.int`. This is because our shape computations involving this
kind of arithmetic are never negative in practice, and we don't have a
"round towards zero" scalar int divide counterpart.
2. Anchoring on `RuntimeAssertOp` sounds really suspicious, and if
someone happens to add a runtime assert in the future that doesn't boil
down to shapes, then it would add to the worklist considerably. We might
be able to get around this by adding "NoMemoryEffect" to ops which are
"ReadOnly" so that the inputs for the runtime asserts get cse'd with
existing elements of the worklist before we even get to this pass.