Commit Graph

32 Commits (c71728b18217de0eb56afbb0cb6321715d1b79d3)

Author SHA1 Message Date
Rob Suderman f7b5c13870
Change linalg.matmul_unsigned to linalg.matmul with unsigned type_fn (#3587)
Change linalg.matmul_unsigned to linalg.matmul with unsigned type_fn

Signed-off-by: Max Dawkins <max.dawkins@gmail.com>
Co-authored-by: Max Dawkins <max.dawkins@gmail.com>
2024-08-02 11:32:24 -07:00
Peiming Liu ba16bad8c7
[torch-mlir] bump stablehlo/llvm version (#3471)
Update to llvm/llvm-project@5207632f86
Update to openxla/stablehlo@d41390c3a7
2024-06-18 16:59:53 -07:00
Scott Todd d6e1d836ca
Drop torch attributes at the end of backend conversion. (#2876)
Fixes https://github.com/llvm/torch-mlir/issues/2866

Some backends / downstream projects expect that a "fully converted"
program has no remaining ops or attributes from the original dialect(s).
2024-02-13 14:32:02 -08:00
Aart Bik 0aed231e21
[torch-mlir][conversion-test] cleanup trailing whitespace in mlir files (#2807) 2024-01-25 14:24:28 -08:00
Rob Suderman a24aadbfab
[aten] Make `torch.aten.matmul` to `linalg` work for non-broadcasting case (#2659)
Broadcasting for `torch.aten.matmul` is optional so a MxN with NxK
matmul should be legalized to a `linalg.matmul`.
2023-12-20 10:09:10 -08:00
Quinn Dawkins 030b0140d4
[TorchToLinalg] Lower aten.cat to tensor.concat (#2650)
This replaces the lowering of aten.cat with tensor.concat, allowing more
efficient handling of concatenations in downstream flows. The refbackend
populates concat decomposition patterns that can be used to recover the
previous lowering.
2023-12-15 15:45:32 -05:00
Quinn Dawkins 141202bc01
[TorchToLinalg] Fix integer type handling for aten.mm (#2615)
Despite aten.mm requiring the input and output types match, we still opt
to maintain signedness semantics in case later passes try to do any sort
of integer type narrowing.
2023-12-07 00:13:53 -05:00
Stella Laurenzo 860be09a39
Elide dynamic broadcast checks when in strict symbolic shapes mode. (#2496)
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.

Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.

In the linalg pipeline, many runtime checks are elided when this returns
true.
2023-09-29 16:45:48 -07:00
Jiawei Wu 60bad54f27
[Torch Dialect] replace none-index in aten.Index.Tensor's param by manually generating it (#2344)
* [Torch Dialect] replace none-index in aten.Index.Tensor's  param by manually generating it
Co-authored-by: Jiawei Wu <wujiawei.aml@bytedance.com>
Co-authored-by: Jianzhe Xiao <jianzhe.xiao@bytedance.com>

* minor typo fix

* add new failed e2e tests for ltc

* fix typo

* Address comments

* Add more e2e tests

* add failed e2e tests for LTC

* address comments

* remove decomposition for AtenIndexTensorHackedTwinOp
2023-08-15 19:36:08 +08:00
Vivek Khandelwal f6a6cfea4e
[MLIR][TORCH] Add support for negative index values for index.Tensor op (#2233)
This commit adds the support for index.Tensor op when the index values
are negative. This commit wraps around the index values by checking
their values at run time.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-06-16 14:21:04 -05:00
Ashay Rane a11ea93877
build: update llvm tag to f8b84268 (#1528)
The only change required was to update a test to reflect the changes
in https://reviews.llvm.org/D136541.
2022-10-26 15:33:53 -05:00
Ramiro Leal-Cavazos 82a3860e25
build: update llvm tag to 4546397e (#1502)
This commit makes the following changes needed to update bump LLVM:

- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)

Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>

Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
2022-10-18 04:22:53 +00:00
AmosLewis 940959589b [MLIR][TORCH] Add Byte and Char Dtype support 2022-09-30 13:19:31 +05:30
Vivek Khandelwal 65d811e267 [MLIR][TORCH] Fix dynamic cases for aten.index.Tensor 2022-08-19 12:13:20 +05:30
Tanyo Kwok 290d7755fb
importer: add initial support for loading Float16 tensors (#1169)
follow up #761:

    This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
    method to enable the creation of tensors whose base type is Float16.
    This patch also adds a test to validate the IR generation, and it
    updates the test for importing tensors of various types.
2022-08-08 12:37:31 +08:00
Ashay Rane bb52a460cb
mlir: bump llvm tag to 5380e3 (#856)
In addition to updating the llvm-project submodule, this patch also:

1. updates shape functions and tests so that `func` and `call`
   operations refer to the `func` dialect
2. avoid duplicate registration of dialects
2022-05-16 12:54:35 -07:00
Ashay Rane 809f240f01
importer: add initial support for loading BFloat16 tensors (#761)
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is BFloat16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
2022-04-29 09:01:49 -07:00
Ashay Rane a893c7d5cf
Add shape transfer function and lowering to linalg for aten.neg (#759)
* shape: add shape transfer function for aten.neg

Prior to this patch, the list of shape transfer functions did not
include `aten.neg`, which resulted in errors like below.

```
error: unsupported by backend lowering: tensor with unknown rank or dtype
note: see current operation: %0 = "torch.aten.neg"(%arg0) :
  (!torch.vtensor<[256,256],f32>) -> !torch.vtensor<*,f32>
note: this is likely due to a missing shape transfer function in shape_lib_gen.py
```

This patch fixes the problem by adding a shape transfer function to
reflect the point-wise nature of this operation.

* linalg: add translation of aten.neg operation

This patch adds a translation rule to lower `aten.neg` operations on
tensors to an `arith.negf` operation wrapped inside a `linalg.generic`
operation.  This patch also adds a rudimentary test.
2022-04-15 11:11:22 -07:00
Vigilans 63fb1e5aad Bump LLVM at 8361c5da30588d3d4a48eae648f53be1feb5cfad 2022-03-18 13:16:14 -04:00
Ramiro Leal-Cavazos 5ec70c175d
[LINALG] Add torch-to-linalg lowering for `TensorStaticInfoCastOp` (#634)
This commit adds a lowering for `TensorStaicInfoCastOp` that simply
replaces the op with the `tensor::CastOp`.
2022-03-02 13:35:26 -08:00
Gaurav Shukla f00d1686c8 [LINALG] Add E2E support for `aten.[Bool.Tensor|Float.Tensor]` op
- This commit adds lowering of `aten.Bool.Tensor` and
  `aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
  input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
  `aten.Float.Tensor` op, it folds to the scalar number.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-14 23:09:20 +05:30
George Petterson f41958037a Add NumToTensor 2021-11-08 15:56:52 -05:00
Prashant Kumar 53b4275ef5 Add lowering of `aten.Int.Tensor` op.
The lowering of `aten.Int.Tensor` op has been added.
The changes has been made as a part of `convert-torch-to-linalg` pass.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-11-01 21:58:08 +05:30
Yi Zhang 0902438882 Update llvm-project to a54f4eae0e1d0ef5adccdcf9f6c2b518dc1101aa
This brings in https://reviews.llvm.org/D110797. PRs that are in
progress will need to use scripts provided by
https://llvm.discourse.group/t/psa-removed-arithmetic-ops-from-standard/4455.
2021-10-18 13:36:42 -04:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva a99cbeeb7e Move TorchConversion dialect and TorchTo* into torch-mlir 2021-09-23 21:39:31 -07:00
Sean Silva cab8d922ec Add TorchToIREE and factor out TorchConversion dialect.
This converts a basic list op (torch.prim.ListConstruct) to the IREE
dialect.

```
    def forward(self, x: float):
            return [x, x]
```

turns into:

```
builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> {
  %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float>
  return %0 : !torch.list<!torch.float>
}
```

which turns into:

```
builtin.func @forward(%arg0: f64) -> !iree.list<f64> {
  %c1 = constant 1 : index
  %c0 = constant 0 : index
  %c2 = constant 2 : index
  %0 = iree.list.create %c2 : !iree.list<f64>
  iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64
  iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64
  return %0 : !iree.list<f64>
}
```

As part of doing this, I realized that it was time to formalize the IR
form that we reach right before running TorchTo{Linalg,Std,...}. We now
call it the "Torch backend contract". We then lower the "Torch backend
contract" to the "npcomp backend contract", which involves the new
TorchConversion (`torch_c`) dialect, which holds ops that need to
operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE
list, etc.) and the `!torch` types.

This made more sense, as I realized that if I didn't factor out
`torch_c` then the Torch dialect would have a dependency on IREE
dialect (we previously didn't notice this was an issue because we only
depended on `builtin` types), which seemed wrong to me.

Recommended review order:
- TorchToIREE.cpp / `TorchToIREE/basic.mlir`
- Look at the new structure of createTorchScriptToNpcompBackendPipeline.
  It now lives in TorchConversion/Transforms/Passes.cpp and cleanly
  calls into `Torch::createTorchScriptToTorchBackendPipeline` for the
  frontend lowering to the Torch backend contract.
- Mechanical change extracting
  `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new
  TorchConversion dialect, and a few passes specific to the lowering
  from the Torch backend contract to the npcomp backend contract.
- Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that
  we convert lists as part of operand materialization, we need to use
  the original operands). Also added test for AtenMaxPool2dOp and fixed
  m_TorchConstantIntList.
- TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that
  are created as part of operand materialization for conv/max pool/avg pool ops
  in TorchToLinalg.
2021-08-16 15:01:58 -07:00
Sean Silva 83b5b5456d Bump llvm-project to da289a174fc6617c7be37be2947480510fd4f02a
- Build adjustments for `.cpp.inc` dialect files.
- Renaming of `memref.dim` to `tensor.dim` for tensor case.

Minor changes:
- Renaming of `mlir::linalg::ReassociationIndices` to
  `mlir::ReassociationIndices`.
- Adjust command line option parsing in npcomp-run-mlir.
2021-07-07 13:57:29 -07:00
Sean Silva 79928cd2dd Generalize support for elementwise ops.
We plumb through e2e a fair number of interesting cases:
- unary, binary, ternary elementwise ops
- ops like `torch.aten.add.Tensor` that also take a scalar parameter
- static size-1 broadcasting

We allow the static size-1 broadcasting case, but emit a runtime error
in the case of dynamic size-1 broadcasting. This seems like a sweet spot
subset of things that can be lowered directly to linalg, while not being
overly constraining to users. This is consistent with what IREE is doing
for CHLO->Linalg lowering as well
([code](50bf7a87e4/iree/compiler/InputConversion/MHLO/BroadcastingToLinalgPatterns.cpp (L1))).

To test the static size-1 case, we added support for the
`torch.aten.unsqueeze` op and lowering for it through
`linalg.tensor_expand_shape`. This involved a generalization of
`MaximizeValueSemantics` able to handle it (the solution there also
works for `torch.aten.flatten.using_ints` which we need for ResNet
anyway)

Also, a few minor additional changes:
- Add `VerifyInvariantsBeforeBackendLowering` pass, which catches a
  large class of errors before we get to backend lowering (now that we
  are doing dialect conversion, the errors are way nicer if we just emit
  them up front rather than in the guts of a random pattern).
- Minor change to RefBackend to allow `linalg.tensor_expand_shape`.

Recommended review order:
- e2e tests in elementwise.py
- `ConvertElementwiseOp` in TorchToLinalg.cpp + elementwise.mlir test
- `ConvertAtenUnsqueezeOp` in TorchToLinalg.cpp + unsqueeze.mlir test
- RefineTypes.cpp + tests
- MaximizeValueSemantics changes + test
- VerifyInvariantsBeforeBackendLowering pass + test
2021-06-28 13:28:38 -07:00
Sean Silva 145d4ae23c Bump llvm-project to a37cf17834d39411ed1d669098b428f8374c5b45
Changes:
- Change to operand ordering of `linalg.fill`.
2021-06-23 10:03:29 -07:00
Sean Silva 370e3270ab Introduce `!torch.tensor` / `!torch.vtensor` types.
This removes our reliance on the numpy dialect and avoids our off-label
use of the builtin tnesor type for modeling unknown dtypes.  The
`!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor.
The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic
tensor. The new types look as follows syntactically:

```
// Least-static-information, non-value-semantic tensor.
!torch.tensor
// Explicit form of least-static-information variant.
!torch.tensor<*,unk>
// Least-static-information, value-semantic tensor.
!torch.vtensor
// Explicit form of least-static-information variant.
!torch.vtensor<*,unk>
// Fixed-set of allowable element types, with first-class support for
// Torch's frontend signedness semantics.
!torch.tensor<*,si32>
// First-class support for unknown dtypes.
!torch.tensor<[?,?,?],unk>
// Standard MLIR representation of `?` for unknown dimensions.
!torch.tensor<[?,2,?,4],unk>
// Statically shaped / dtyped example.
!torch.vtensor<[1,2,3,4],f32>
```

This required fairly significant changes throughout the compiler, but
overall it is a big cleanup. We now have a much clearer layering of "the
Torch frontend lowering" vs "lowering to std + linalg + etc.".

At the C++ level, there is `ValueTensorType`, `NonValueTensorType`.
We also have a helper `BaseTensorType` (kind of like ShapedType) which
interoperates with those two.

Included changes:
- New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for
  creating torch tensor literals in the frontend.
- Consistently use signedness for the types (except i1 which I didn't
  touch -- we need to sort out the situation with !basicpy.BoolType
  there anyway so will be attending to that soon)
- Frontend can annotate whether an argument to the function has value
  semantics. We currently require this, as our backend contract does not
  currently allow us to even model the non-value-semantic case. Before,
  the value-semantic assumption was randomly injected in the middle of
  the pass pipeline.
- Move ArrayToTensor (now called MaximizeValueSemantics) and
  RefinePublicReturn passes to torch dialect.
- The TorchToStd and TorchToLinalg passes are now type conversions from
  `!torch.vtensor` to `tensor` and use the dialect conversion infra.
  The overall conversion pipeline is set up following the best practices
  of the "Type Conversions the Not-So-Hard Way" talk. This required
  introducing `torch-func-builtin-tensorize` and
  `torch-finalizing-builtin-tensorize` passes analogous to the upstream
  bufferization passes with the corresponding names (mostly just
  copypasta from there).
- Misc Torch-level canonicalizations -- we now cleanly layer the
  lowering to std later in the pipeline, so we are gradually lessening
  our reliance on random std constant folding before we get to that
  point.

Recommended review order:
- New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp
- New ops in TorchOps.td / TorchOps.cpp
- Less important / more mechanical stuff
  - Frontend changes.
  - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-06-10 10:56:48 -07:00
Sean Silva 2efda323ff Significantly restructure torch/aten import design.
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.

This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).

Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
  imported as `torch.somens.someunqualname.someoverloadname` (skip the
  last dotted part if the overload name is empty), OR, if we don't have
  such an op registered, it is imported as
  `torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
  - The addition of the "overload name" is a critical element here, as
    the `(ns,unqual,overload)` triple is unique, which solves a lot of
    problems we were having.
  - This involves having separate MLIR ops for the `trailing_` and
    `.out` variants and all the different overloads. This seemed
    necessary, because the set of overloads is so wild and varied and
    unstructured. The previous design was leaning into some underlying
    structure that just isn't there -- the default situation is
    the "random overload that we want to manage on the MLIR side",
    rather than that being an exception. E.g.  `aten::ne` (not-equal)
    has 21 overloads, only 4 of which are c10 dispatcher ops see
    [gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
    and the "out" variant is really called `.Tensor_out` instead of
    `.out` as it frequently is for other ops.
  - Rationale for all being in `torch` namespace: the set of operators
    are so varied and unstructured that "dialect per namespace"
    doesn't result in anything resembling the typical MLIR dialect
    boundary expectations. We could maybe draw the boundary at
    dispatcher ops vs non-dispatcher ops, but that doesn't seem to
    really result in very much useful structure at this point in time.
  - Note: within the torch operator registry, we effectively have a
    mini-basicpy subdialect (already type-resolved), which is reasonably
    structured.
  - The existing Torch op interfaces are also removed -- now that we
    track the overload name, we can losslessly find the original
    operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
  `ReduceOpVariantsPass` that keys off certain traits (and perhaps
  eventually interfaces) to reduce variants of ops to a smaller set,
  ideally operating on immutable tensors and using surrounding ops to
  model the mutability/aliasing aspects.
  - Note: `torch.ns.unqual.overload` ops allow both immutable and
    mutable tensors (unlike the previous hard distinction in the common
    case). This is a premonition for a future change that will introduce a
    bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
  "ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
  It should look somewhat familiar, but the benefit of hindsight has
  allowed a lot of simplifications.

The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).

Recommended review order:
- Start at some of the new import IR, e.g. in
  `frontends/pytorch/test/node_import/prim.py`,
  `frontends/pytorch/test/acap_export/test_export_add3.py`, and other
  tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
  and associated generated files:
  - `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
  - `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
  traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
  `frontends/pytorch/csrc/builder`. Probably most interesting is the new
  code in `torch_to_mlir_utils.cpp` that has the logic to create the
  `torch.operator` ops or `torch.ns.unqual.overload` ops.

This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
2021-05-19 13:37:39 -07:00