Commit Graph

3082 Commits (cb6a499460ef95827ced4544803a2e71e06c7973)
 

Author SHA1 Message Date
Rob Suderman 25a5a22cbd
[torch] Support `torch.convolution` quantized lowering to `linalg` (#2811)
Linalg has quantized specific operations. We can lower to these
operations when there is a known zeropoint and scale operations. This
allows the `convolution` to occur with lower bitwidth's, improving the
overall performance.
2024-01-30 13:46:47 -08:00
Aaron St George 4c557847bd
Don't fold `aten.detach` if result isn't same type as input. (#2824)
We were seeing some assertion failures after some checks around folders
were tightened up in LLVM:
https://github.com/llvm/llvm-project/pull/75887 . This PR essentially
moves the logic that used to be applied at the LLVM level into the
folder, which seems to be the suggested fix.

I'm not sure if the IR that caused issues for us _should_ be valid?
```
%1 = torch.aten.detach %arg0 : !torch.tensor<[1],f32> -> !torch.tensor
```
A better fix might be to create a verifier ensuring the result of
`aten.detach` has the same type as its operand.

---------

Co-authored-by: aaron-stgeorge <aaron.stgeorge@getcruise.com>
2024-01-30 09:45:51 -08:00
Rob Suderman db67bc555a
Bump LLVM to llvm/llvm-project@70eb0e3 (#2827) 2024-01-30 09:01:42 -08:00
James Newling 9d983161fc
Describe how to get --debug and --debug-only flags in dev notes (#2793)
Change should be visible :
https://github.com/newling/torch-mlir/blob/docs_update/docs/development.md
2024-01-30 08:30:00 -08:00
James Newling 1e882f5803
Additional information in error message (#2783)
See change in test for what the new message looks like.
2024-01-30 08:28:08 -08:00
Vivek Khandelwal e18fcebd3a
[CI] Change Roll PyTorch runner (#2828)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-30 16:42:18 +05:30
aldesilv eff325abc3
OnnxToTorch ReduceMax lowering (#2768)
Fixes https://github.com/nod-ai/SHARK-Turbine/issues/352
2024-01-30 11:44:48 +05:30
Quinn Dawkins 1d6aca3823
Add .git-blame-ignore-revs to allow ignoring sweeping formatting changes (#2823)
This allows the following command to be used to ignore sweeping
formatting changes.

```
git blame --ignore-revs-file .git-blame-ignore-revs <file_of_interest>
```
2024-01-29 10:29:51 -08:00
Quinn Dawkins 494089d53d
Clang format refresh (#2812)
After noticing a number of commits with unrelated formatting changes,
I think something was changed with clang-format at one point and we're
seeing a number of unrelated changes. Doing a refresh can help avoid
this.

The changes made here came from
```
find lib -iname *.h -o -iname *.cpp  | xargs clang-format -i --style=llvm
find include -iname *.h -o -iname *.cpp  | xargs clang-format -i --style=llvm
find projects -iname *.h -o -iname *.cpp  | xargs clang-format -i --style=llvm
```
2024-01-29 12:59:33 -05:00
Rob Suderman d3fd754b93
[onnx] `onnx.MatMulInteger` lowering to `torch.mm` and `quint*` types (#2761)
Torch does not have an equivalent matmul operation for integers. Instead
it sidechannels the information via its quantized types. For this
lowering we setup these sidechannels then invoke `torch.mm`.
2024-01-29 09:40:21 -08:00
Rob Suderman 67cb2e7341
Fix illegal use of TypeRange (#2815)
TypeRange is an ArrayRef<Type> and therefore cannot be safely
instantiated from a list initializer.
2024-01-29 09:23:05 -08:00
Stella Laurenzo 032f225fa5 [ci] Allow long line in YAML 2024-01-27 19:43:41 -08:00
Stella Laurenzo 6b3ebb237f [ci] Use a different cache key for torch nightly vs stable. 2024-01-27 19:42:29 -08:00
Stella Laurenzo 4513c3ca87
[ci] Add step to run unit tests. (#2820) 2024-01-27 19:35:48 -08:00
Stella Laurenzo 77c14ab22b
[ci] Upgrade to new runners and disable unsupported jobs. (#2818)
Per the RFC and numerous conversations on Discord, this rebuilds the
torch-mlir CI and discontinues the infra and coupling to the binary
releases
(https://discourse.llvm.org/t/rfc-discontinuing-pytorch-1-binary-releases/76371).

I iterated on this to get latency back to about what it was with the old
(much larger and non-ephemeral) runners: About 4m - 4.5m for an
incremental change.

Behind the scenes changes:

* Uses a new runner pool operated by AMD. It is currently set to manual
scaling and has two runners (32-core, 64GiB RAM) while we get some
traction. We can either fiddle with some auto-scaling or use a schedule
to give it an increase during certain high traffic hours.
* Builds are now completely isolated and cannot have run-to-run
interference like we were getting before (i.e. lock file/permissions
stuff).
* The GHA runner is installed directly into a manylinux 2.28 container
with upgraded dev tools. This eliminates the need to do sub-invocations
of docker on Linux in order to run on the same OS that is used to build
wheels.
* While not using it now, this setup was cloned from another project
that posts the built artifacts to the job and fans out testing. Might be
useful here later.
* Uses a special git cache that lets us have ephemeral runners and still
check out the repo and deps (incl. llvm) in ~13s.
* Running in an Azure VM Scale Set.

In-repo changes:

* Disables (but does not yet delete):
  * Old buildAndTest.yml jobs
  * releaseSnapshotPackage.yml
* Adds a new `ci.yml` pipeline and scripts the steps in `build_tools/ci`
(by decomposing the existing `build_linux_packages.sh` for in-tree
builds and modularizing it a bit better).
* Test framework changes:
* Adds a `TORCH_MLIR_TEST_CONCURRENCY` env var that can be used to bound
the multiprocess concurrency. Ended up not using this in the final
version but is useful to have as a knob.
* Changes the default concurrency to `nproc * 0.8 + 1` vs `nproc * 1.1`.
We're running on systems with significantly less virtual memory and I
did a bit of fiddling to find a good tradeoff.
* Changed multiprocess mode to spawn instead of fork. Otherwise, I was
getting instability (as discussed on discord).
* Added MLIR configuration to disable multithreaded contexts globally
for the project. Constantly spawning `nproc * nproc` threads (more than
that actually) was OOM'ing.
* Added a test timeout of 5 minutes. If a multiprocess worker crashes,
the framework can get wedged indefinitely (and then will just be reaped
after multiple hours). We should fix this, but this at least keeps the
CI pool from wedging with stuck jobs.

Functional changes needing followup:

* No matter what I did, I couldn't get the LTC tests to work, and I'm
not 100% sure they were being run in the old setup as the scripts were a
bit twisty. I disabled them and left a comment.
* Dropped out-of-tree build variants. These were not providing much
signal and increase CI needs by 50%.
* Dropped MacOS and Windows builds. Now that we are "just a library" and
not building releases, there is less pressure to test these commit by
commit. Further, since we bump torch-mlir to known good commits on these
platforms, it has been a long time since either of these jobs have
provided much signal (and they take ~an hour+ to run). We can add them
back later post-submit if ever needed.
2024-01-27 18:35:45 -08:00
Stella Laurenzo 4a4d80a6ad
[ci] Add lint job and enable yaml linting of GH files. (#2819) 2024-01-27 15:48:06 -08:00
MaheshRavishankar 28c7051ceb
Bump LLVM to llvm/llvm-project@5fcf907b34 (#2810) 2024-01-26 18:38:44 -08:00
Aart Bik 46a25d7241
[torch-mlir][sparse] preserve sparsity during lowering torch to linalg (#2809)
This preserves sparsity at the most obvious places of lowering TORCH
tensors to MLIR RankedTensorType tensors. Other places are marked for
audit. With some initial lowering tests.
2024-01-26 10:54:59 -08:00
Vivek Khandelwal da7c6d2c16
[MLIR][TORCH] Add support for dynamic shape for Onnx.Transpose op (#2803)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-26 09:46:54 -08:00
Phaneesh Barwaria 4964977e85
[ONNX][MLIR] support constantOfShape op (#2747) 2024-01-26 09:36:39 -08:00
Yuanqiang Liu e73c5368fb
[FxImporter] make FxImporter to fit python<=3.9 (#2802)
As that torch with py3.9 is also used widely.
2024-01-26 09:01:47 +08:00
Rob Suderman 2ef228328f
[torch] `torch.dequantize` for per channel tensors to` linalg` (#2769)
Support a lowering for dequantization for per channel tensors from
`torch` dialect to a linalg decomposition. Tested via a numerical
`torch` test.
2024-01-25 16:40:21 -08:00
Aart Bik 0aed231e21
[torch-mlir][conversion-test] cleanup trailing whitespace in mlir files (#2807) 2024-01-25 14:24:28 -08:00
Aart Bik fe836ceebf
[torch-mlir][test] cleanup trailing whitespace in mlir files (#2806) 2024-01-25 14:24:13 -08:00
Aart Bik dc9c624a29
[torch-mlir][sparse] provide a bazel build (#2805) 2024-01-25 12:54:40 -08:00
Aart Bik e824fbc65c
[torch-mlir][torch] add encoding field to torch type (#2799)
This adds an encoding field to the torch type, using the interfaces for
printing, parsing, and verification. Note that although this change
prepares adding sparsity to the torch type (as illustrated by the round
trip and invalid tests), nothing in this change depends on the actual
contents of the encoding field!
2024-01-25 10:04:04 -08:00
lonely eagle e581b33f96
[Stablehlo]fix CumsumInputDtypeInt32Module_basic on stablehlo backend. (#2797)
Code used for testing.For the location of CumsumInputDtypeInt32Module in
the repo you can see
[here](311b6b0286/projects/pt1/python/torch_mlir_e2e_test/test_suite/basic.py (L4148)).
```python
import torch
import torch_mlir

class CumsumInputDtypeInt32Module(torch.nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, val):
        return torch.ops.aten.cumsum(val, 1)
module = torch_mlir.compile(CumsumInputDtypeInt32Module(), [torch.randn(2, 7, 4).to(torch.int32)], output_type="stablehlo")
print(module.operation.get_asm())
```
After fixing the bugs.
```
module attributes {torch.debug_module_name = "CumsumInputDtypeInt32Module"} {
  func.func @forward(%arg0: tensor<2x7x4xi32>) -> tensor<2x7x4xi64> {
    %0 = stablehlo.constant dense<0> : tensor<i64>
    %1 = stablehlo.convert %arg0 : (tensor<2x7x4xi32>) -> tensor<2x7x4xi64>
    %2 = "stablehlo.reduce_window"(%1, %0) ({
    ^bb0(%arg1: tensor<i64>, %arg2: tensor<i64>):
      %3 = stablehlo.add %arg1, %arg2 : tensor<i64>
      stablehlo.return %3 : tensor<i64>
    }) {padding = dense<[[0, 0], [6, 0], [0, 0]]> : tensor<3x2xi64>, window_dilations = dense<1> : tensor<3xi64>, window_dimensions = dense<[1, 7, 1]> : tensor<3xi64>, window_strides = dense<1> : tensor<3xi64>} : (tensor<2x7x4xi64>, tensor<i64>) -> tensor<2x7x4xi64>
    return %2 : tensor<2x7x4xi64>
  }
}
```
2024-01-25 10:44:08 +08:00
Rob Suderman f6f890520b
[torch][quant] Quantized `torch.mm` for linalg with end-to-end test (#2750)
This includes custom op matching for decomposed operations and fusing
dequantization into dense operations. As a validation we compare
to the dequant+mm torch implementation.
2024-01-24 14:02:50 -08:00
Rob Suderman 60bf6c25af
[onnx] Lower `onnx.QLinearMatMul` lowering to `torch` operators (#2776)
We can plumb the linear matmul into pytorch using its quantized types
with side channel information. To handle the final int8 operation we
dequantize and requantize.
2024-01-24 12:28:48 -08:00
Vivek Khandelwal 894805dd5e
[MLIR][TORCH] Support for `onnx.LayerNormalization` (#2789)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-24 11:08:20 -08:00
Gaurav Shukla 12f123eff8
[ONNX][MLIR] Add support for pad op in the onnx pipeline (#2738)
This commit adds mapping from `onnx.pad` op to `torch.pad` op. Currently
it does not support `axes` parameter of `onnx.pad` op.

Signed-off-by: Gaurav Shukla <gaurav.shukla@amd.com>
2024-01-25 00:33:37 +05:30
Phaneesh Barwaria ac8975ea12
[MLIR] [ONNX] lowering for onnx tile op and sign op (#2725) 2024-01-24 22:56:21 +05:30
zjgarvey c531f5495b
AtenAdaptiveMaxPool2d Conversion to Linalg (#2779)
The logic here is very similar to the conversion for AdaptiveAvgPool1d
#2661 with a few modifications:

1. buffVal = -inf instead of 0
2. the main linalg generic op accumulates a max, instead of a sum, to
the first output tensor
3. avg pooling requires dividing the sum pool by the kernel width, which
we stored as an auxilliary tensor (kSizeTensor). Here, the auxiliary
tensor will be recording the indices. Strangely enough, the only
signature available for this function is to return indices, and it
appears that they must be computed whether the user desires them or not.
See
[pytorch/torch/nn/functional.py](https://github.com/pytorch/pytorch/blob/main/torch/nn/functional.py#L1174).

Before writing other adaptive pooling conversions, the logic of this
decomposition should be rolled into a helper function that will work for
both max and avg pooling ops. Even the auxiliary tensor should likely be
automated. This code was written in a slightly more tedious way than
strictly necessary (often using loops to fill SmallVectors up to rank-2,
which is only two in this case), in order to more easily facilitate the
transition to a helper function.
2024-01-24 09:09:56 -08:00
Vivek Khandelwal 311b6b0286
CI: Fix Roll PyTorch CI failure at determining commit hash (#2796)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-24 15:55:12 +05:30
Xida Ren (Cedar) ccaac85788
implement aten.conv1d, aten.conv3d, and aten.conv_tbc (#2757)
convolution with [time,batch,channel] ordering, as opposed to the
default [batch, channel, time]. Currently implementing by transposing
the input and output, but may need to get its own implementation in the
future because this is supposed to be an op that gives a speedup. This
is used by fairseq
(https://github.com/facebookresearch/fairseq/issues/172).

(in case you were wondering like me, this is different from transposed
convolution. Transposed convolution has fractional strides).

---------

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
Co-authored-by: Frederik Harwath <frederik.harwath@amd.com>
2024-01-23 21:30:03 -08:00
Chi_Liu 77ae56337d
[ONNX][MLIR] Add support for onnx.Exp op (#2792)
https://github.com/nod-ai/SHARK-Turbine/issues/312
2024-01-23 13:45:00 -08:00
James Newling dc056e58e6
[MLIR][TORCH] Add onnx.cast cases used by OPT-1.25M (#2787) 2024-01-23 21:06:25 +05:30
Vivek Khandelwal c9d8ffb414
build: manually update PyTorch version (#2788)
Set PyTorch and TorchVision version to nightly release 2024-01-22.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-23 21:05:19 +05:30
Gaurav Shukla b7a0329676
[ONNX][MLIR] Fix padding size constraint for onnx.maxpool op (#2782)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2024-01-23 19:23:01 +05:30
Dave Liddell d452c4f4c0
Fix onnx importer to treat Constant values as static (#2780)
Fixes  https://github.com/llvm/torch-mlir/issues/2764

In the case of OPT, there are ConstantOfShape ops whose input shape is
not static (that is, an initializer), but rather comes from a Constant
op. The importer can't handle such non-static input shapes.

The fix here is to create initializers for a subset of Constant ops
(ones with "value" attributes), so that their outputs can be used
statically. Additionally, there was no case for creating a splat of
int64, so I added that as well.

---------

Co-authored-by: Dave Liddell <dliddell@xilinx.com>
2024-01-22 13:00:05 -08:00
Chi_Liu cad98e8113
[ONNX][TORCH-MLIR] Add TopK support (#2774)
https://github.com/nod-ai/SHARK-Turbine/issues/331
2024-01-22 12:56:39 -08:00
Ramiro Leal-Cavazos 5883ef0f21
Fix unused variable warnings (#2775) 2024-01-22 11:05:55 -08:00
Srinath Avadhanula 73b30604da
Do not try to legalize transposed convolution (#2721)
Currently transposed convolution is not handled correctly by
`TorchToTosa`. This PR allows transposed convolutions to pass through
the conversion so that they can be handled by other conversion passes
later in a pipeline.

An example input which produces a compilation error is:

```
func.func @forward(%input: !torch.vtensor<[1,64,1,100],f32>) -> !torch.vtensor<[1,64,2,200],f32> {
  %true = torch.constant.bool true
  %int1 = torch.constant.int 1
  %int2 = torch.constant.int 2
  %weight = torch.vtensor.literal(dense<0.0> : tensor<64x64x3x3xf32>) : !torch.vtensor<[64,64,3,3],f32>
  %bias = torch.vtensor.literal(dense<0.0> : tensor<64xf32>) : !torch.vtensor<[64],f32>
  %stride = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
  %int1x1 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
  %output = torch.aten.convolution %input, %weight, %bias, %stride, %int1x1, %int1x1, %true, %int1x1, %int1 : !torch.vtensor<[1,64,1,100],f32>, !torch.vtensor<[64,64,3,3],f32>, !torch.vtensor<[64],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[1,64,2,200],f32>
  return %output : !torch.vtensor<[1,64,2,200],f32>
}
```

This MLIR produces an error about a cast operation with a size mismatch
when passed through `torch-to-tosa`:

```
 error: 'tensor.cast' op operand type 'tensor<1x64x1x50xf32>' and result type 'tensor<1x64x2x200xf32>' are cast incompatible
```

---------

Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
2024-01-22 10:57:56 -08:00
Franz Haniel b9806cfa38
[TorchToLinalg] Add lowering for torch.aten.diagonal (#2632) 2024-01-22 12:47:13 -05:00
James Newling 50ac3b1912
g++ build fix (#2778)
Introduced in 704cfdaf08 of @wu-s-john 

g++ compiler error: 

Pooling.cpp:177:13: error: explicit specialization in non-namespace
scope ‘class

Design looks good, g++ is just freaking out for no good reason.
Un-nesting the template classes fixes the error.

We don't have g++ CI. This hopefully happens infrequently enough that we
can just fix manually. My service to those folks who really like
building with g++... :)
2024-01-19 19:12:29 -08:00
Dave Liddell 2f4924015d
[onnx] Added flatten (#2760)
[https://github.com/nod-ai/SHARK-Turbine/issues/328](url)

---------

Co-authored-by: Dave Liddell <dliddell@xilinx.com>
2024-01-19 16:18:16 -08:00
Scott Todd b3a3ad4e2a
Generalize install instructions to not exclude Windows. (#2771)
Overly specific docs can get stale easily. It looks like
https://llvm.github.io/torch-mlir/package-index/ has included Windows
packages since around https://github.com/llvm/torch-mlir/pull/1521.

Here's an example release:
https://github.com/llvm/torch-mlir/releases/tag/snapshot-20240118.1087

```
torch-2.3.0.dev20240109+cpu-cp311-cp311-linux_x86_64.whl
torch-2.3.0.dev20240109+cpu-cp311-cp311-win_amd64.whl
torch-2.3.0.dev20240109+cpu-cp38-cp38-linux_x86_64.whl
torch-2.3.0.dev20240109-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
torch-2.3.0.dev20240109-cp311-none-macosx_10_9_x86_64.whl
torch_mlir-20240118.1087-cp311-cp311-linux_aarch64.whl
torch_mlir-20240118.1087-cp311-cp311-linux_x86_64.whl
torch_mlir-20240118.1087-cp311-cp311-macosx_11_0_universal2.whl
torch_mlir-20240118.1087-cp311-cp311-win_amd64.whl
torch_mlir-20240118.1087-cp38-cp38-linux_x86_64.whl
```
2024-01-19 15:13:32 -08:00
Xida Ren (Cedar) 18669b38cb
Create add_ops.md (#2770) 2024-01-19 10:44:45 -08:00
Gaurav Shukla 3b85c70748
[ONNX][MLIR] Add support for onnx.gather op (#2726)
This commit adds support for gather op in the onnx pipeline.
https://github.com/nod-ai/SHARK-Turbine/issues/242

Signed-off-by: Gaurav Shukla <gaurav.shukla@amd.com>
2024-01-19 21:58:29 +05:30
John Wu 704cfdaf08
Add aten.pool_max3d support to torch-to-linalg (#2735)
Added verification logic to the abstract_interpreter_lib_gen.py

Also made some unit tests

Initially, I thought we can use `linalg::pooling_ndhwc_max` to help
implement this problem. However, on a 5-dimensional matrix it does the
pooling on dimensions (2, 3, 4) which is not what we want. We want
pooling on dimensions (3, 4, 5).

To achieve this, we would need to lower our code using the `linalg`
dialect.


Turns out the pooling code in `linalg` looks like this.

```
func @max_pooling_ncdhw(%I: memref<?x?x?x?x?xf32>, %K: memref<3xindex>, %O: memref<?x?x?x?x?xf32>,
                        %strides: memref<3xindex>, %dilations: memref<3xindex>) {
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %N = memref.dim %I, %c0 : memref<?x?x?x?x?xf32>
    %C = memref.dim %I, %c1 : memref<?x?x?x?x?xf32>
    %D = memref.dim %I, 2 : memref<?x?x?x?x?xf32>
    %H = memref.dim %I, 3 : memref<?x?x?x?x?xf32>
    %W = memref.dim %I, 4 : memref<?x?x?x?x?xf32>

    %kernel_d = memref.load %K[%c0] : memref<3xindex>
    %kernel_h = memref.load %K[%c1] : memref<3xindex>
    %kernel_w = memref.load %K[2] : memref<3xindex>
    %stride_d = memref.load %strides[%c0] : memref<3xindex>
    %stride_h = memref.load %strides[%c1] : memref<3xindex>
    %stride_w = memref.load %strides[2] : memref<3xindex>
    %dilation_d = memref.load %dilations[%c0] : memref<3xindex>
    %dilation_h = memref.load %dilations[%c1] : memref<3xindex>
    %dilation_w = memref.load %dilations[2] : memref<3xindex>

    linalg.generic {
        indexing_maps = [
            affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d * %stride_d + kd * %dilation_d, h * %stride_h + kh * %dilation_h, w * %stride_w + kw * %dilation_w)>,  // Map for input tensor
            affine_map<(n, c, d, h, w, kd, kh, kw) -> (kd, kh, kw)>,                                              // Map for kernel tensor
            affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d, h, w)>                                            // Map for output tensor
        ],
        iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"],
        doc = "3D Max Pooling NCDHW with Strides, Dilations, and Kernel Size"
    } ins(%I, %K : memref<?x?x?x?x?xf32>, memref<3xindex>) outs(%O : memref<?x?x?x?x?xf32>) {
        ^bb0(%input_elem: f32, %kernel_elem: index, %output_elem: f32):
            %max_val = arith.maxf %input_elem, %output_elem : f32
            linalg.yield %max_val : f32
    }
    return
}

```

This was implemented based on it's source code with the adjustments
mentioned above:

4ca1b5e094/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml (L5647)

Issues related to this can be found here

https://github.com/nod-ai/SHARK-Turbine/issues/324
2024-01-19 21:09:46 +05:30