Changes made during upstreaming:
* Removed comments attributing some copied code back to torch-mlir
(since it is now repatriated).
* Re-organized imports.
* Inlined RefMapping/RefTracker and TypeSubclassMap from an external
utility module.
* Added FxImporter class comments.
* Updated stack trace extraction to be fail safe.
* Added an entry-point for `import_frozen_exported_program` which uses
the shiny new upstream `torch.export.export()` API (versus the
lower-level/older API that Turbine is presently using). This
necessitated a small FX rewrite to line external state management up
with current conventions.
* Adapted one of Turbine's importer tests to go with this initial
submission. Turbine unfortunately has a lot of more-integration-ey
tests, and I would like to extract those as more of unit tests of the
importer features and upstream them that way vs trying to copy directly.
For now, one overall test with the initial submission gets us moving.
I acknowledge that there are some code quality things that could be
improved in this submission: this was authored over the course of many
months (and often via some trial and error). I would like to keep it
relatively converged with the downstream for the next few steps while
getting the test suite upstreamed. And then it will be easier to take a
hygienic pass through the code.
Including co-authors for contributors in the git log of the original
repository.
Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com>
Co-authored-by: Avinash Sharma <aviator1994@gmail.com>
Co-authored-by: Arham Khan <arhammkhan@gmail.com>
Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu>
Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
The expression for HardSigmoid in Onnx
(https://onnx.ai/onnx/operators/onnx__HardSigmoid.html): max(0, min(1,
alpha * x + beta))
is inherently different from HardSigmoid in Torch
(https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html)
which is: if x < -3 -> 0
elif x > 3 -> 1
else x/6 + 1/2
That being said, it was just better to compute out the entire expression
when translating the Onnx expression to Torch mlir, which is done in
this PR. Some of the logic is shared from the files in
`DecomposeComplexOps`. Therefore, refactored some shared logic between
`DecomposeComplexOps` and `DefaultDomainGToP` and put it in a `Utils`
file.
- Going through the `#torch-mlir` channel on the `llvm` discord, I
realize that there are some useful commands that would be extremely
helpful in creating Onnx lowers to Torch MLIR. Seems a lot of people are
contributing to this. So, I thought it would be good to add this
information to the docs.
These tools helped streamlined the development of this PR:
https://github.com/llvm/torch-mlir/pull/2682
This PR adds the `enable_ir_printing` option to `torch_mlir.compile`,
which can be used to print the IR for all intermediate passes.
When running the added test file via:
```shell
$ python test/python/compile.py 2> tiny.stderr
```
the file `tiny.stderr` is about 700 KB.
Adding the `--progress` flag shows the same output as what `git clone`
would show. This is very nice for slow connections. Without it, the
command may run for many minutes without providing any indication that
it is still doing something.
For `--depth=1`, I think it should be safe as most people have new
enough git versions nowadays, but let's be safe and make it an optional
suggestion. I ran all the tests fine with `--depth=1`, but I don't know
whether things will keep working when the submodules get updated for
systems with old git versions.
The three remaining compare operations
onnx.Greater
onnx.Less
onnx.GreaterOrEqual
Are also added with this push request.
This concludes a set of basic tensor compare functions.
Lowerings for `transpose` from ONNX to `aten`. Implementation depends on
making multiple `aten.transpose` operations swapping pairs of dimensions.
As `onnx.transpose` can swap around any dimensions it may require
constructing multiple `aten.transpose`.
This replaces the lowering of aten.cat with tensor.concat, allowing more
efficient handling of concatenations in downstream flows. The refbackend
populates concat decomposition patterns that can be used to recover the
previous lowering.
This commit adds the OnnxToTorch support for Reciprocal, Round,
ScatterElements, Sigmoid, Sin, Tanh, Sqrt, Sub, Sum, Where, Xor,
Squeeze, Unsqueeze ops.
For reviewers, the ops that weren't trivial and probably require extra
review are Sum, Squeeze, and Unsqueeze.
Lowerings for `selu` lowerings for ONNX to the corresponding torch
implementations. Torch's `selu` implementation has fewer features so
we use the a generalized `elu` with the input scale set to `1.0`.
Simple Python console script to import an ONNX protobuf to the torch
dialect for additional processing.
For installed wheels, this can be used with something like:
```
torch-mlir-import-onnx test/python/onnx_importer/LeakyReLU.onnx
```
Or from a dev setup:
```
python -m torch_mlir.tools.import_onnx ...
```
This is part 1 of 2, which will also include upstreaming the FX
importer. I started with ONNX because it forces some project layout
updates and is more self contained/easier as a first step.
Deviating somewhat from the RFCs on project layout, I made the following
decisions:
* Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks
already has opened up that namespace and it seemed to fit. Better to
have fewer things at that level.
* Setup the build so that the root project only contains MLIR Python and
pure Python deps (like the importers), but this can be augmented with
the `projects/` adding more depending on which features are enabled.
* The default build continues to build everything whereas in
`TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a
`torch-mlir-core` wheel with the pure contents only.
`onnx_importer.py` and `importer_smoke_test.py` are almost verbatim
copies from SHARK-Turbine. I made some minor local alterations to adapt
to paths and generalize the way they interact with the outer project. I
expect I can copy these back to Turbine verbatim from here. I also
updated the license boilerplate (they have the same license but slightly
different project norms for the headers) but retained the correct
copyright.
Other updates:
* Added the ONNX importer unit test (which also can generate test data)
in lit, conditioned on the availability of the Python `onnx` package. In
a followup once I know everything is stable, I'll add another env var
that the CI can set to always enable this so we know conclusively if
tests pass.
* Moved the ONNX conversion readme to `docs/`.
* Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` ->
`TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the
JitIR importer and LTC options `cmake_dependent_options` for robustness.
For easier tracking of issues, sort the TOSA passing list. It is still
significantly smaller then the XFAIL list would be.
Resolves#2620, at least until the xfail list gets smaller than the
passing list.
Signed-off-by: Eric Kunze <eric.kunze@arm.com>
`AtenStackOp` defines this folder for list operand containing single
element:
```
OpFoldResult AtenStackOp::fold(FoldAdaptor adaptor) {
auto list = getOperand(0).getDefiningOp<PrimListConstructOp>();
if (!list || !list->hasOneUse() || list.getElements().size() != 1)
return nullptr;
return list.getElements()[0];
}
```
However, unlike `AtenCatOp`, `AtenStackOp` cannot be folded away for
single element list operand because the result from a stack operation
contains an additional dimension (of size 1, like expand_shape).
This PR removes the `AtenStackOp::fold` method, and adds an e2e test for
single element list input case, which fails on current `main` as
follows:
```
Unexpected outcome summary: (linalg)
****** Failed tests - 1 tests
FAIL - "TensorsStackSingleElementListModule_basic"
@ trace item #0 - call to "forward"
@ output of call to "forward"
ERROR: shape (torch.Size([10, 32])) is not equal to golden shape (torch.Size([10, 1, 32]))
```
Thanks Chris Lalau Keraly for the bug report.
This commit adds the OnnxToTorch support for BitwiseXor, BitwiseOr, Div, Equal, Cast,
Ceil, Floor, Cos, and Clip op.
This commit also adds the TorchToLinalg support for aten.clamp.Tensor and aten.clamp_min.Tensor op.
Signed-Off By: vivekkhandelwal1424@gmail.com