This commit adds support for TorchToTosa lowering of
`aten.broadcast_to` op for cases:
1.) When the rank of input and output tensor is equal.
2.) When the rank of input tensor is zero.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
This adds a very long and obnoxious option to disable crashing tests.
The right fix here is to use the right multiprocessing techniques to
ensure that segfaulting tests can be XFAILed like normal tests, but we
currently don't know how to implement "catch a segfault" in Python
(patches or even just ideas welcome).
Motivated by #1361, where we ended up removing two tests from *all*
backends due to a failure in one backend, which is undesirable.
* Add aten.frobenius_norm.dim op and init its conversion pattern to linalg and MHLO,
* run symbolic-shape-optimization before hlo-legalize-to-linalg to fit more mhlo e2e tests.
- Update MHLO commit to build with LLVM commit hash 00d648bd
- Update TorchToMhlo code to work with Stablehlo
- Re-enabled two failing TOSA tests, thus resolving Github Issue #1231
We use it for more than TorchScript testing now. This is a purely
mechanical change to adjust some file paths to remove "torchscript".
The most perceptible change here is that now e2e tests are run with
```
./tools/e2e_test.sh
instead of:
./tools/torchscript_e2e_test.sh
```
Change logic so that we never run the multiprocessing codepath with only
1 worker. That configuration was causing all subsequent tests to
spuriously fail if one test failed with a crash (this was easy to see
after sorting the tests). That configuration was the one used by the CI.
Also, sort tests to make output nicer.
Also, make verbose mode more verbose so that it is easy to see in `-s`
mode which test is crashing.
PyTorch recently added support for `dim=None` in the `torch.var`
(5ca9b2b6fa)
and `torch.std`op (eb0e30e0bc).
This commit adds the corresponding support in torch-mlir.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
* Replace CHECK_EQ with TORCH_CHECK_EQ
* Check value of TORCH_MLIR_USE_INSTALLED_PYTORCH during LTC build
* Update LTC XFAIL with NewZerosModule ops
* Explicitly blacklist _like ops
* Automatically blacklist new_/_like ops
* Prune away unused Python dependencies from LTC
* Add flag to disable LTC
* Autogen dummy _REFERENCE_LAZY_BACKEND library when LTC is disabled
* Implement compute_shape_var
* Removed Var tests from XFAIL Set
* XFAIL tests using _local_scalar_dense or index.Tensor
* Add StdDim tests to XFAIL set
* Autogen aten::cat
- Pruned number of xfailed e2e LTC tests from 305 to 134
- Reviewed every failure to ensure the error genuinely warrants an xfail
- Fixed bug where non-tensor outputs of LTC computation had `.to('cpu')` called, which caused a failure and inflated the xfail count
- Fixed bug with `HBC_basic` test where a constant tensor was created in its constructor without being declared as a buffer, which prevented the device from being updated when the parent `torch.nn.Module` got moved to the `lazy` device
- Note that this test is still xfail'd due to some unsupported ops. Left a comment about some potential issues that may arise if it gets reenabled in the future
- Updated autogen `GeneratedTorchOps.td` to reflect the latest set of supported ops
- Renamed `aten.zero.functionalization` to `aten.zero` to reflect upstream PyTorch changes
* Added e2e LTC Torch MLIR tests
* Fix seed for reproducability
* Check if computation is None before getting debug string
* Updated unit tests, and added numeric tests
* Print name of the model layer that fails numeric validation
* Run LTC e2e test with CI/CD
* Set seed in main function, instead of beginning of execution
* Add comment to specify number of digits of precision
* Fixed typo
* Remove tests for LTC example models
* Added LTC option to torchscript e2e
* Implement compile and run for LTC e2e test
* xfail all tests that use ops that aren't currently supported
- Supports cases where the view op expands and collapses dims
simulataneously. This does not handle the case where it is neither
expanding nor collapsing (e.g. [2, 3] -> [3, 2])
- Additionally fixes a previous bug with adding 1-sized dims on both
sides of a tensor with aten.view
The biggest change here is to upgrade RefineTypes to the new sparse
dataflow framework.
Smaller changes:
- minor changes to type parsing
- suppress warnings in e2e tests
The original conversion pattern for `AtenBatchNormOp` required that
the input rank be greater than 2; however, the only
expectation in the conversion pattern and in Pytorch is that the input
rank is greater than 1, since the second dimension of the input must
match the size of the `weight`, `bias`, `runningMean`, and
`runningVar` inputs. This commit fixes the `inputRank` check.
A previous fix to the handling of size-1 dims in
`aten.view` (https://github.com/llvm/torch-mlir/pull/962) resulted in
the wrong grouping of dimensions when size-1 dims where between two
dims of size greater than 1. This commit fixes that.
This commit lowers `aten.matmul` to `linalg.BatchMatmul` under the
following conditions:
1. The result of matrix multiplication must have batch dimensions,
i.e., rank greater than 2.
2. The resultant matrix must have at most 1 dynamic batch dimension.
It also handles broadcasting of batch dimensions when batch dimensions
of the matrices are broadcastable.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit decomposes `aten.baddbmm` op into `aten.bmm`,
`aten.mul.Scalar`, and `aten.add.Tensor` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
A user might want to avoid the extra layer of multiprocessing libary for
debugging purpose. In such cases, the -s flag can be used to force
sequential execution.
Added the dynamic registration of return function to the execution
engine. This makes sure that different/multiple return types are supported.
Also, updated the .style.yapf indentation to 4.
That way, downstreams don't have to duplicate this list.
Also, remove "external config" feature, since it is subsumed by just
importing the test suite.
This commit adds support for the cases of view op where the rank and
the shapes of the input and result are equal.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
Effectively, this mode works by compiling op by op as the NN is eagerly executed by PyTorch. Entailed in that compilation is building a representation of the op that can be `torch.jit.script`ed, importing using `ModuleBuilder`, and then executing (e.g., with `RefBackendLinalgOnTensorsBackend`). This mode includes a fallback to conventional PyTorch if anything in the torch-mlir compilation process fails (e.g., unsupported op).
Currently, all e2e tests pass execpt for two that involve an upstream PyTorch bug (https://github.com/pytorch/pytorch/issues/74400).
High priority next steps:
1. A compile cache in order to speed up reruns of the same NN.
2. Integration with IREE (though not in this repo).
3. Integration with `torch.distributed`.
- This commit adds decomposition of `aten.dropout` op. It also covers the
training mode of the same op.
- It also adds lowering of `aten.sub.float` op.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.
This commit also adds the lowering of `ValsemVariantAtenCopyOp`.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit fixes the 2nd and 3rd return types of the `aten.native_layer_norm`.
Previously the mean and rSTD were returned with reduction dims removed.
This commit fixes this and keeps the reduction dims of the results.
Signed-Off-By: Prateek Gupta <prateek@nord-labs.com>
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.
This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.
This commit also updates the `torch.bincount` op test cases.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.
This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.
Recommended review order:
1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
`canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.
Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).
Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
This pass is added to lower ops, which can not be lowered
via the TorchToLinalg pass, such as `torch.bincount` op.
This pass also uses torch-mlir's TMTensor Dialect to lower the
complex ops.
Also add torch.bincount op lowering with the help of TMTensor dialect
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds support for integer type inputs for
`AtenMaxOp`, `AtenSumOp`, `AtenSumDimIntListOp`.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
- This commit adds E2E support for `aten.rand_like` and
`aten.bernoulli_.Tensor` ops.
- The `aten.bernoulli(x)` was implemented as:
`aten.bernoulli(x) = rand_like(x) < 0.5`, assuming 0.5 as default
probability, whereas according to the pytorch documentation:
https://pytorch.org/docs/stable/generated/torch.bernoulli.html#torch.bernoulli
the input x in `aten.bernoulli(x)` is itself a tensor containing
probabilities to be used for drawing the binary random number.
- So this commit fixes the `aten.bernoulli(x)` implementation as:
`aten.bernoulli(x) = rand_like(x) < x`.
- It also fixes the case where the input to `aten.bernoulli_.float` is
an integer tensor. In this case the input must be casted to float type
before passing it as operand to `aten.rand_like` op.
`aten.bernoulli_.float(x, p) = rand_like(float(x)) < p`.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
The view op allows for the new shape argument to have a -1 value for
one of the dimensions, and the op is expected to deduce the size of
that dimension by looking at the sizes of the other dimensions and
comparing it to the total number of elements in the original
tensor. This commit adds this functionality.
This commit does a couple of things. First, it fixes a bug in the
`linalg.generic` body of the `nll_loss_forward` lowering where the
`ignoreIndex` was being compared with the loop index rather than the
current element of the `target` tensor. This was not being caught by
the tests because they were not testing the case where `ingnoreIndex`
actually corresponds to a value in `target`. This has been fixed.
Second, this commit adds support for the `reduction` argument in
`torch.nll_loss_forward` as well as support for 1-D inputs. In order
to simplify the lowering code, I've refactored the code that creates
the `linalg.generic` ops for elementwise and reduction ops into static
functions, to avoid having boilerplate code for indexing maps, etc
that can be very error prone.
Note: The function `convertScalarToDtype` was moved to before all the
conversion patterns, but nothing in it was modified.