This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
Fix the type promotion code for scalar only operation to return
TorchType which is the type tracked in ValueKnowledge.scalarType.
- Fix `getPromotedResultScalarType` to return Torch type.
- Add `getBuiltInTypeForTorchScalar` helper to convert scalar type
to builtin type before passing to the next level type promotion
helper `updateResultTypeState`.
- Add `setScalarType` helper to make setting ValueKnowledge.scalarType
easier.
This commit adds lowering of `aten.ge.float`, `aten.ge.float_int`,
`aten.ne.float_int`, `aten.gt.float_int` and `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py and scalar_comparison.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The main changes are:
- Added `ValueKnowledge.scalarType` to track scalar type information.
- Added `ValueKnowledge.kind` to indicate the value kind.
- Modified the meet and join helper functions. The ValueKnowledge has
slightly more complicated state now so the meet and join function need
to look at the `kind` field in addition to just the type field.
This also has a fix for the adjustment of types of TupleConstruct
inputs, which I found when using this new functionality on a model.
Some scenarios in tracing create situations where the output of
TupleConstruct has a more refined type than the inputs.
This introduces a helper `adjustStaticInformationForValues` which
subsumes the `derefineValues` helper and the tensor static information
adjustment we were doing.
This commit decomposes `aten.to.dtype_layout` op into `aten.to.dtype` op.
This commit also fixes the formatting for the file type_conversion.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit fixes the `ConstantPad2dStaticModule` test case by adding
the lowering of `aten.pad` operation. Previously the test case
mapped to `aten.constant_pad_nd` operation.
The `aten.pad` now decomposes into `aten.constant_pad_nd` operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
This commit adds lowering of `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
This commit adds lowering of `aten::max_pool2d_with_indices_backward` op.
This commit also fixes formatting issues in basic.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds support for multi-dimensional tensors as input to the
`_index_put_impl_` op. The support was to some degree already there,
since `ScatterOp` already supports multi-dimensional tensors. This
commit also adds a bit more error checking to `index_put` and
refactors the code for creating `ScatterOp`s to mimic the way one
would make a `Linalg::GenericOp`.
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.
This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287
Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
that derefines to a UnionType (this also fixes#664).
There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
The reified code to compute the shape of torch.aten.constant_pad_nd
uses negative indices when setting list elements. This was not
converted to a positive offset in one place in SimplifyShapeCalculations
which prevented computation of the static shape.
- This commit adds decomposition of `aten.dropout` op. It also covers the
training mode of the same op.
- It also adds lowering of `aten.sub.float` op.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
The `assemblyFormat` stuff (which generates unrolled, per-op C++ code)
was taking up a lot of compile time, and all the ops are essentially
printed with the same logic. So this PR makes them all call the same
helper function. This is done by using
`let hasCustomAssemblyFormat = 1` and then implementing `FooOp::parse`
and `FooOp::print`.
Additionally, the `Generated*Ops.td` files are all collapsed into just
`GeneratedTorchOps.td` (there is no reason to have the files separate,
since the files are very large anyway so one is always having to search
within them -- editors don't care that the file to search is now a bit
bigger :) ).
This reduces TorchOpsODSGenerated.cpp compile time (which is now
GeneratedTorchOps.cpp) from 39 to 31 seconds on my machine. This is
actually less than I expected, but this PR is an overall cleanup to the
code anyway. The next step will be to introduce (better) functionality
upstream for sharding the TorchOps.cpp.inc file, so that we can truly
parallelize the O(#ops) costs. This is also necessary, because after
this PR, TorchDialect.cpp is now the slowest file to compile, due to the
`addOperations<... all the ops ...>` call, which needs to be shareded
too.
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.
This commit also adds the lowering of `ValsemVariantAtenCopyOp`.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The ODS-generated code included via the `TorchOps.cpp.inc` file takes a
very long time to compile. This PR isolates it into its own file so that
the build system can cache it.
This PR creates a new file `TorchOpsODSGenerated.cpp` just to include
the `TorchOps.cpp.inc` file. Doing so required moving to the "new" way
to define verifiers, since the static `verify` free functions in
TorchOps.cpp weren't accessible from the .inc file after it was moved to
`TorchOpsODSGenerated.cpp`.
On my machine, this drops the build time of TorchOps.cpp (such as when
iterating on a canonicalizer) from >40 seconds to <10 seconds.
10 seconds still isn't great though, but at least it isn't "go get a
coffee" type of waiting.
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.
This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.
This commit also updates the `torch.bincount` op test cases.