This PR contains three commits to update the validation checks in the
ONNX -> Torch conversion pass for the AveragePool, Pad, and Slice operators:
> onnx: fix preconditions for lowering AveragePool ops
>
> The `pads` attribute of the AveragePool operator specifies the value to
> pad at both the beginning as well as the end of the axis (see
> https://onnx.ai/onnx/operators/onnx__AveragePool.html#attributes), so
> the size of this attribute should be twice the rank of the input tensor.
> However, our TorchOnnxToTorch bails out early since it incorrectly
> compares the pads attribute with the rank (not twice the rank) of the
> input tensor.
>
> This patch fixes the code to match the spec and adds a lit test.
> onnx: allow optional constant value for Pad operator
>
> The `constant_value` input of the onnx.Pad operator is optional (see
> https://onnx.ai/onnx/operators/onnx__Pad.html#inputs), but the
existing
> logic for lowering the operator into the Torch dialect assumes that it
> is mandatory.
>
> This patch makes the attribute optional and constructs a default value
> (a list of zeros the size of the input tensor) if the attribute was not
> specified.
> onnx: fix checks for axes and steps inputs of Slice operator
>
> The ONNX Spec for the Slice operator allows the `starts` and `ends`
> inputs to have fewer indices that the dimensions of the `data` tensor
> (see https://onnx.ai/onnx/operators/onnx__Slice.html), but our code
> expects these inputs to be as many as the `data` tensor's dimensions.
>
> More precisely, the spec requires that the `starts` and `ends` inputs
> are only as long as the `axes` input, but since the `axes` input is
> optional, the default type for the `axes` input has to match the type
> for the `starts` and `ends` inputs. Moreover, the number of indices in
> the `steps` input also has to match those in the `axes` inputs (instad
> of matching the dimensions of the `data` input).
>
> This patch fixes the checks in the TorchOnnxToTorch conversion so that
> they match the ONNX spec.
This commit modifies the OnnxToTorch lowering of Onnx.Reshape op by
creating the result shape list for the aten.reshape using the result
shape values inferred from the op's result shape.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Leaning on the QDQ functionality in torch we can support the QLinearConv
operation by piggybacking through `torch.Convolution`. This includes
some changes such as allowing the `onnx` rewriter to run recursively.
Doing so allows `QLinearConv` to decopmose to `onnx.Convolution` which
is then lowered to `torch`.
The existing `flatten` lowering did not define what the intermediate
shape was. This could result in failures to lower further to linalg as
the intermediate shape was unknown. Added a shape refinement section.
`torch` requires that padding be symmetric for pooling operations. To
support non-symmetric pad we need to separately materialize out the
padding operation.
---------
Co-authored-by: James Newling <james.newling@gmail.com>
With the recent LLVM integrate and changes from
https://github.com/llvm/llvm-project/pull/78260, we hit this build error
in Stablehlo (which is quite old).
```
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1020:14: error: no member named 'startRootUpdate' in 'mlir::PatternRewriter'
rewriter.startRootUpdate(op);
~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1026:16: error: no member named 'finalizeRootUpdate' in 'mlir::PatternRewriter'
rewriter.finalizeRootUpdate(op);
~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1029:16: error: no member named 'cancelRootUpdate' in 'mlir::PatternRewriter'
rewriter.cancelRootUpdate(op);
~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1108:14: error: no member named 'updateRootInPlace' in 'mlir::PatternRewriter'
rewriter.updateRootInPlace(op->getParentOp(), [&]() { return; });
~~~~~~~~ ^
4 errors generated.
Target @torch-mlir//:torch-mlir-opt failed to build
```
I'm still puzzled as to how this didn't fail with the CMake merge gating
CI (do we not test Stablehlo builds/tests?). In any case, bumping our
submodule to https://github.com/openxla/stablehlo/pull/1918 fixes it.
It exposes a new failing lit test in TorchToStablehlo though, that I
have looped stablehlo developers into
([here](https://discord.com/channels/999073994483433573/999074539138990131/1201235845391331419)).
```
bazel run @torch-mlir//test/Conversion:TorchToStablehlo/scatter.mlir.test
...external/torch-mlir/test/Conversion/TorchToStablehlo/scatter.mlir
within split at <stdin>:1 offset :33:8: error: unexpected error: Expects non-empty reduction block for type inference
%0 = torch.aten.scatter.src %arg0, %int0, %arg1, %arg2 : !torch.vtensor<[?,?],si64>, !torch.int, !torch.vtensor<[?,?],si64>, !torch.vtensor<[?,?],si64> -> !torch.vtensor<[?,?],si64>
^
LLVM ERROR: Failed to infer result type(s).
```
Bazel CI:
https://github.com/sjain-stanford/torch-mlir/actions/runs/7732673480/job/21083102228
`onnx` explicitly specifies that `raw_data` is stored in `little-endian`
layout. While converting
to `torch` we need to convert from a known endian format to an internal
format of consistent
layout. This means endianness must be correct during the import of
`onnx.Constant`.
---------
Co-authored-by: Xida Ren (Cedar) <cedar.ren@gmail.com>
Torch does not have an equivalent matmul operation for integers. Instead
it sidechannels the information via its quantized types. For this
lowering we setup these sidechannels then invoke `torch.mm`.
This preserves sparsity at the most obvious places of lowering TORCH
tensors to MLIR RankedTensorType tensors. Other places are marked for
audit. With some initial lowering tests.
We can plumb the linear matmul into pytorch using its quantized types
with side channel information. To handle the final int8 operation we
dequantize and requantize.
This commit adds mapping from `onnx.pad` op to `torch.pad` op. Currently
it does not support `axes` parameter of `onnx.pad` op.
Signed-off-by: Gaurav Shukla <gaurav.shukla@amd.com>
Currently transposed convolution is not handled correctly by
`TorchToTosa`. This PR allows transposed convolutions to pass through
the conversion so that they can be handled by other conversion passes
later in a pipeline.
An example input which produces a compilation error is:
```
func.func @forward(%input: !torch.vtensor<[1,64,1,100],f32>) -> !torch.vtensor<[1,64,2,200],f32> {
%true = torch.constant.bool true
%int1 = torch.constant.int 1
%int2 = torch.constant.int 2
%weight = torch.vtensor.literal(dense<0.0> : tensor<64x64x3x3xf32>) : !torch.vtensor<[64,64,3,3],f32>
%bias = torch.vtensor.literal(dense<0.0> : tensor<64xf32>) : !torch.vtensor<[64],f32>
%stride = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
%int1x1 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%output = torch.aten.convolution %input, %weight, %bias, %stride, %int1x1, %int1x1, %true, %int1x1, %int1 : !torch.vtensor<[1,64,1,100],f32>, !torch.vtensor<[64,64,3,3],f32>, !torch.vtensor<[64],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[1,64,2,200],f32>
return %output : !torch.vtensor<[1,64,2,200],f32>
}
```
This MLIR produces an error about a cast operation with a size mismatch
when passed through `torch-to-tosa`:
```
error: 'tensor.cast' op operand type 'tensor<1x64x1x50xf32>' and result type 'tensor<1x64x2x200xf32>' are cast incompatible
```
---------
Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
We can make the per-tensor version of the operation to the dequantize
operation via marking with the make quantized tensor component. This
introductions the `qint*` and `quint*` tensor type that can be lowered
to teh appropriate dequantization behavior during the torch-to-linalg
conversion.
We can map the per_tensor case to the `torch.aten.quantize_per_linear`
operation. In this case we extract the `scale` and `zeropoint` values
and directly invoke the quantization, then return the integer
representation value.
Implemented ONNX.Range. The spec says the data type for start, limit,
delta are 0-D can be double, float, int16, int32, int64, All int types
mapped to !torch.int and all float types mapped to !torch.float
---------
Co-authored-by: Kumar Deepak <kumar@xilinx.com>
Handles the multiple cases of `onnx` constant values and converts them
to `torch` literal tensors. This can include splats with a single
integer or floating point value, a set of explicit integer values, or
an elements array attr of values.
This PR updates the torch-to-tosa conversion with following changes:
- Support torch.none as min/max input argument for tosa.clamp op
- Support negative value as start index for tosa.slice op
- Add tosa.logical_or lowering support
e2e test:
python -m e2e_testing.main --config=tosa
LIT tests:
cmake --build build --target tools/torch-mlir/all
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>