Commit Graph

29 Commits (eb7bf78a9c1e250949cf0151628f35fb0ac06903)

Author SHA1 Message Date
Stella Laurenzo 6961f0a247
Re-organize project structure to separate PyTorch dependencies from core project. (#2542)
This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20

There are two primary goals:

1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.

Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.

This also takes steps toward a couple of other layering enhancements:

* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.

It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.

Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.
2023-11-02 19:45:55 -07:00
Vivek Khandelwal f416953600 [MLIR][TORCH] Add TorchConversionToMLProgram and MLProgramBufferize pass
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-12-02 13:20:46 +05:30
Ramiro Leal-Cavazos 0983a7f93a
Fix modulus calculation in LCG algorithm of refbackend (#1658)
The current implementation sets the `nextSeed` value to `temp & 127`,
which is wrong. The last step of the LCG algorithm for the multiplier
and increment chosen should be `temp % 2^{64} = temp & (1 <<
63)`. However, because we are dealing with i64 values, the modulus
operation happens automatically, so it is not needed.

See Donald Knuth's values for LCG here:
https://en.wikipedia.org/wiki/Linear_congruential_generator
2022-11-30 08:46:52 -08:00
Sean Silva 39de4d6265 [cleanup] Make diagnostics better
Also remove some unused imports.
2022-11-17 02:09:54 -08:00
Ashay Rane bb52a460cb
mlir: bump llvm tag to 5380e3 (#856)
In addition to updating the llvm-project submodule, this patch also:

1. updates shape functions and tests so that `func` and `call`
   operations refer to the `func` dialect
2. avoid duplicate registration of dialects
2022-05-16 12:54:35 -07:00
Yi Zhang 0cb216a1ad [Torch][Linalg] Add basic support for RNG
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
2022-01-31 18:56:42 -05:00
Vivek Khandelwal 35cf8d18f7 Add support for two return values
This commit adds support for two return values of type
memref f32 and i64.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-01-11 11:07:10 +05:30
Yi Zhang 0fe70994e5 Add support for multiple return values
This change is to unblock the work of some backprop ops returning more
than one tensors. We will need to think of a more scalable approach
in the future if more flexible return types combinations are needed.
2021-11-16 21:07:45 -05:00
Prashant Kumar fd505db2c6 Adding support for returning elemental types.
Support for returning elemental types. Previously, only
memref types as returning types was supported. All the hacky ways
to write tests which return elemental types should be taken care of.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-11-08 22:20:48 +05:30
dan 2e1498ad11 add i64 support to refbackend 2021-10-05 15:12:44 -04:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva a25163fbfa Remove old RefBackend
It is superceded by the new one.
2021-09-22 15:33:28 -07:00
Sean Silva 29e1b2fe89 Delete RestrictedCanonicalizer
It doesn't work properly with the new dialect registration framework.
This was latent and only was exposed when running through npcomp-opt.
Not worth investing the brainpower to fix now.
2021-08-27 19:09:29 +00:00
Sean Silva f168cacd6d Remove TCF and TCP.
These were legacy concepts that are now superceded by direct Torch to
linalg-on-tensors lowering. These were based on some very early thinking
related to the layering of frontends vs codegen, which is now obsolete
because:
- We expected a lot more centralization at the frontend (TCF) level. It
  turns out that frontend needs really vary a lot, and there is no grand
  unifying TCF dialect plausible. The additional layer isn't worth it.
- Linalg-on-tensors obsoletes the primary need for TCP. There are still
  a few things not representable with linalg-on-tensors, but the support
  is growing and the whole "not included in linalg-on-tensors" direction
  needs to be rethought. Our TCP dialect didn't cover any of the
  actually important things in this space (such as sort, FFT, top-k,
  etc.).

See historical [slides](https://drive.google.com/file/d/1iljcpTQ5NPaMfGpoPDFml1XkYxjK_6A4/view) / [recording](https://drive.google.com/file/d/1jSPa8TwPKUt0WuLquGc8OgSUVYJHMvWZ/view)
for more details on the origin story here.

Their presence was confusing users too
[bug](https://github.com/llvm/mlir-npcomp/issues/248).

Also,
- Trim down npcomp-run-mlir testing. It was testing TCF to TCP
  lowering for the most part. The essential stuff is retained and
  rephrased with linalg-on-tensors. (we should probably rename it
  "refback-run" or something, as it is just a way to invoke RefBackend)
- test/Python/Backend/RefJIT/simple_invoke_numpy.py is XFAIL'ed. Our
  "anti-framework" direction seems to be the likely future path.
2021-08-02 12:08:39 -07:00
Sean Silva 99178a167d Bump llvm-project to 0524a09cc7e1a0797982feacf505825231efbee7
- renames of OwningRewritePatternList -> RewritePatternSet
  - also `insert` to `add`
- RewritePatternSet holds a context now
- memref dialect split from std
2021-03-23 14:29:05 -07:00
Bryce Arden 4591884d06 [refbackrt] Scalar arg support
* Adds f32 scalar argument support across the ABI boundary.
* Adds support for passing input type / shape information
  across the ABI boundary
* Adds support for parsing / creating input FloatAttr's in
  `npcomp-run-mlir`
2021-03-23 13:16:44 -07:00
Sean Silva 6351474382 Bump llvm-project to bc556e5685c0f97e79fb7b3c6f15cc5062db8e36
- `let typeDesription` -> `let description`
- LLVMIntegerType -> IntegerType
2021-01-08 14:18:09 -08:00
Sean Silva b2077738ca Bump llvm-project to 444822d77a7fea28aa49edf24533c987efa1b2ee
Fixes:
- renames StandardTypes -> BuiltinTypes
- std.extract_element -> tensor.extract
2020-12-11 14:43:38 -08:00
Sean Silva 46aa6d0a24 [RefBackend] Fix leaks related to ABI boundaries.
Best as I can tell (e.g. from LeakSanitizer), this fixes all the leaks
except for those due to buffers created internally to the codegenned
code itself (up next I'll add the buffer deallocation pass to fix
those).

The main change is that instead of attempting to pass `refbackrt::Tensor`
to the codegenned function directly, we make all the ABI types be
UnrankedMemRef which gets passed awkwardly (but workably) as a
`{size_t rank, void *ptrToDescriptor}` on the ABI. The reason why
refbackrt::Tensor wasn't workable is that is that MLIR doesn't really
have a way to deal with the lifetime of unranked memref descriptors that
happen inside the function, which is inevitably what would happen in the
old code that would emit runtime calls to
`refbackrt.to_memref/refbackrt.from_memref` to convert back and forth to
`refbackrt::Tensor` inside the codegenned code.

So, instead of the `refbackrt.to_memref/refbackrt.from_memref` with no
real sound basis for valid lifetime management, we now have a lovely
piece of code in `refbackrt::invoke` in `Runtime.cpp` that just barely
seems to be sound. We rely on the codegenned code having these
properties, which it seems to have:

- it won't free memref descriptors or their backing buffer for arguments
  of UnrankedMemRef type.

- it will allocate a separate memref descriptor for each result
  UnrankedMemRef (which is ensured by having a separate memref_cast for
  each)

- we can sniff the `allocatedPtr`'s (i.e. the backing buffer pointers)
  to avoid double-freeing in the case of aliasing of the backing buffer
  (including backing buffers for arguments feeding into results)

- to catch the case of statically allocated data (which we need to avoid
  passing to `free`) , check if the `allocatedPtr` is (no joke) equal to
  `0xDEADBEEF`, because there is otherwise no way to distinguish
  statically allocated from malloc'ed data...  (std.global_memref lowering
  to LLVM by happenstance sets the allocatedPtr equal to `0xDEADBEEF`,
  presumably mainly as a debugging thing)

Even with all this, we *still* need to (internally to refbackrt::invoke)
make copies of all inputs/outputs! And the details of how the LLVM-level
ABI gets laid out for e.g. function arguments/returns is still super
tricky.

This really highlights how deficient memref is as the general runtime
type for our use case. It's stewing in my mind how best to improve the
situation. My general gut feeling is that IREE's abstractions for this
are "right", but I need to think more how to distill those aspects of
IREE's design in a "reference" way for RefBackend.

Some implementation notes:

- In terms of how this is implemented, this did catch a bug in our ABI
  wrapper functions in LowerToLLVM.cpp, which I had to fix (it happened to
  work before through some combination of npcomprt::Tensor being passed as
  a single pointer + probably me infinite-monkey-ing it until it worked)

- This actually removes 2 out of the 3 compiler runtime functions (the
  only one left is "abort_if". (most of the memref descriptor code moved
  from CopmilerRuntime.cpp to Runtime.cpp)

  - this also means deleting `refbackrt.from_memref` and
  `refbackrt.to_memref`
2020-11-25 13:09:58 -08:00
Sean Silva 358159a6eb [RefBackend] Open-code shape.get_extent as extract_element
It was annoying that we were creating shape.get_extent in the middle of
the bufferization pipeline, as it required running convert-shape-to-std
at an awkward place. To make that cleaner, just open-code the
extract_element ops that shape.get_extent expands into.

This is a little gross, but it helps with the macroscopic pipeline
ordering issues. Anyway, the train is long-gone of trying to treat
shapes as some special data type that should only be operated on with
shape ops.

Also,
- reorder tensor constant bufferize (which is a module pass) to bracket
all the bufferization function passes, to make the parallelism
opportunities there clearer. Now we have a very clean little
bufferization segment of our pipeline construction.
2020-11-17 11:00:38 -08:00
Sean Silva 5227d52c26 [RefBackend] Use std.global_memref instead of homegrown thing
This vastly simplifies our code, allowing deleting multiple ops,
simplifying multiple passes, and removing a whole pass.

Now `refback` dialect is down to one op (refback.alloc_memref, which
simplifies allocations to just take a shape instead of individual
extents).
2020-11-13 18:43:50 -08:00
Sean Silva 57e58b9272 [RefBackend] Use upstream func-bufferize pass.
Now, the only bufferization we have left is lowering tensor constants to
memref, which will hopefully proceed soon after Rahul's new
std.global_memref lands + the lowering to LLVM IR. Then I'll port
LowerConstantTensorsToMemref to upstream and we'll be 100% upstream
bufferization, except for our local TCP dialect (which will probably go
away and be replaced by std elementwise + linalg named ops on tensors :)
).
2020-11-02 17:38:33 -08:00
Sean Silva f9c2f8eb0d [RefBackend] Use upstream SCF bufferization pass. 2020-10-30 18:12:41 -07:00
Sean Silva 14470f9ff6 [RefBackend] Use upstream std bufferization.
It now subsumes the one we had.
2020-10-21 16:46:56 -07:00
Sean Silva 06a8ba6900 [RefBackend] Use more idiomatic bufferize pattern for TCP.
The time has come for BypassShapes/LowerShapedResultsToMemref to go away :(
For the reference backend, being consistent with upstream conventions is
the name of the game now.

This is a step down in a number of ways, e.g. test clarity and
separation of concerns. But it is fewer files and fewer tests, and
*does* address the "TODO: This is really fragile". It also eliminates two
more ops from the refback dialect (sadly, they are the
shaped_results/yield that we were getting kind of fond of, but alas).
2020-10-15 20:15:53 -07:00
Sean Silva b6bdc8cc4f [RefBackend] Use upstream BufferizeTypeConverter
Now that it has grown source/target materialization capabilities
(spelled with ops tensor_load/tensor_to_memref), we can use it. We can
also now delete refback.memref_to_tensor/refback.tensor_to_memref.

This is also a first step to reducing the downstream functionality
needed in the refback dialect.
2020-10-15 15:58:51 -07:00
Sean Silva 93fc21dad0 [RefBackend] Split out TCF->TCP conversion.
Now the reference backend is cleanly accepts "TCP"+scalar ops.

We introduce tcf-refback-lowering-pipeline which also does TCF->TCP
conversion for convenience until we have a "target interface".
2020-10-12 11:56:39 -07:00
Sean Silva bf99a82832 [RefBackend] Rename Npcomprt dialect to Refbackrt. 2020-10-08 09:07:00 -07:00
Sean Silva ddc2e9de5d [RefBackend] Rename test/E2E.
I missed this in the previous commits.
2020-10-07 15:52:11 -07:00