The original design for the dtype functions outlined in
https://github.com/llvm/torch-mlir/issues/1462 was unable to properly
handle ops that take optional tensors as an input when the optional
tensor has a value of None. By the time the op gets imported into
torch-mlir, if an optional value is None, all information about the
original type is lost from the op type signature, preventing
torch-mlir from knowing if a value of None was from an optional tensor
or not, which was crucial in the original design since each tensor
argument must be turned into two separate arguments for the dtype
function.
This commit changes the interface to dtype functions such that each
tensor turns into a tuple of two ints, the first representing the rank
of the tensor and the second the dtype of the tensor. Since now there
is a one-to-one correspondence between the operands of an op and the
operands of its dtype function, there is no ambiguity about which
operand of the op corresponds with which operand of the dtype
function.
To test the implementation, this commit defines dtype function for
convolution op, which takes one optional tensor as an argument.
* LowerToBackendContract: Explicitly error out on unimplemented operator
But only reject torch.operator when results are invalid.
Otherwise it might be a custom op that the backend supports.
Currently, the op `torch.tensor_static_info_cast` will not get
canonicalized away if the result type has any shape or dtype
information. This is because `isValidSubtype` only returns true when
the tensor types being compared are exactly the same or the supertype
has no shape and dtype information. Being unable to canonicalize away
the `torch.tensor_static_info_cast` gets in the way of further
optimizations, such as shape propagation.
This commit improves `isValidSubtype` by adding logic that compares
the shapes and dtypes of the two tensor types to determine of one type
is indeed a valid subtype of the other.
Fixes https://github.com/llvm/torch-mlir/issues/1926
The data-flow analysis does not always propagate information to the
entire graph. This results in some lattice elements being
uninitialized. Currently the lattice elements are not checked to see
if they are uninitialized before rewriting the graph, potentially
resulting in invalid IR (see
https://github.com/llvm/torch-mlir/issues/1896).
This commit adds handling for uninitialized lattice elements.
This commit replaces the `tanh` dtype function, which was being used
to test the implementation of dtype functions in
a710237437, with a dtype function for
`expm1`. The dtype function for `expm1` is identical to the `tanh`
one, so the same level of testing is maintained.
Currently, there are ops getting dtype information from the
`RefineTypes` pass and ops getting dtype information from the
`TorchDtypeRefinementPipeline`. Since each pass can only propagete
dtype information for the ops it knows how to handle, some models with
many ops handled in both passes require the two dtype propagation
passes to execute many times, reaching the iteration limit set in the
`LowerToBackendContractPass`. To temporarily avoid this issue while
the migration to `TorchDtypeRefinementPipeline` is finished, this
commit switches `tanh` to `expm1`, since the latter is used a lot less
in large models.
In order to verify if a given IR satisfies the backend contract, the
verifier needs to know if decompositions took place, and if so, which
ops were decomposed and which were not.
This commit adds two arguments to `verifyBackendContractPass` to
specify if decompositions took place and which ops to consider backend
legal, similar to the arguments of `LowerToBackendContractPass`.
* [custom op] Generalize shape library logic to work with dtypes
This commit generalizes the shape library logic, so that dtype rules
for ops can also be expressed using the same mechanism. In other
words, each op can now have a shape function and a dtype function
specified in Python that is imported during lowering to calculate the
shapes and dtypes throught a program. For more information about how
to specify a dtype function, see the updated
`docs/adding_a_shape_and_dtype_function.md`.
For those not familiar with how the shape library works, the file
`docs/calculations_lib.md` provides an overview.
The current implementation of `DecomposeComplexOps` fails if an op
expected to be decomposed does not get decomposed in the first
iteration of the `createTorchSimplificationPipeline` in
`LowerToBackendContractPass`. However, some graphs require multiple
iterations of `createTorchSimplificationPipeline` to fully propagate
all statically knowable information, such as dtypes and shapes, to the
entire graph, sometimes resulting in the need to run
`DecomposeComplexOps` more than once.
This commit changes `DecomposeComplexOps` to use a greedy algorithm
for pattern application and moves the legalization check of ops to the
`LowerToBackendContractPass` to allow for the `DecomposeComplexOps` to
run more than once.
- Support for non-prefixed accessors has been removed. See:
https://reviews.llvm.org/D136727
- Rename `operands` to `methodOperands` in `prim.CallMethod` since the
name `operands` overlaps with a builtin method name. See:
https://reviews.llvm.org/D136727
- Add passes in refbackend to lower memref.subview. See:
https://reviews.llvm.org/D136377
- Replace `CopyToValueTensorOps` first in `RewriteViewLikeSubgraph` in
maximize-value-semantics.
The current implementation of the `RewriteViewLikeSubgraph` pass in
maximize-value-semantics creates temporarily invalid IR. In
particular, given a forward slice starting from a
`CopyToNonValueTensorOp` and ending in `CopyToValueTensorOp`s, the
pass first replaces all uses of the `CopyToNonValueTensorOp` with
its operand, which results in all the `CopyToValueTensorOp` users
having their operand have type `!torch.vtensor`, which is invalid.
The correct way to do things is to first replace all the
`CopyToValueTensorOp`s with their operand, and then replace all uses
of the `CopyToNonValueTensorOp` with its operand.
This only started failing now because the generated accessor
`getOperand` for the `CopyToValueTensorOp` now returns a
`TypedValue<NonValueTensorType>`, which has an assert checking that
the value returned is of the expected type.
Summary of changes:
- Replace call to `MemoryEffectOpInterface::hasNoEffect`
with `isMemoryEffectFree`.
- Make fix for the dynamic dims, since
`kDynamicSize` value changed to
`std::numeric_limits<int64_t>::min()` from `-1` in llvm
- `makeShapeLLVMCompatible` and `makeShapeTorchCompatible`
utilities convert shapes in order to remain consistent
with the Torch and MLIR semantics.
- Update tags
llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
This commit fixes the aten.mean and aten.mean.dim op decomposition
for supporting large-sized inputs.
This commit also fixes the formatting for the file stats.py
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
This commit makes the following changes needed to update bump LLVM:
- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
We were already hitting many cases where backends different in terms of
the legal ops that they wanted. This caused unnecessary coupling between
the backends. Examples:
- https://github.com/llvm/torch-mlir/pull/1161
- https://github.com/llvm/torch-mlir/pull/862
This PR centralizes all compilation to go through `torch_mlir.compile`
so that we can keep the logic centralized there. We should move these
lists closer to each backend. Especially cases like
https://github.com/llvm/torch-mlir/pull/862 where blocking a
decomposition is necessary to avoid a crash emphasize that the set of
decompositions is tightly coupled to the backend, and should be
"controlled by the backend" and not something arbitrarily tweakable.
Also:
- Fix a small bug in the way we passed through the backendLegalOps
option.
- Add better error messages in `torch_mlir.compile` for import errors.
One of the simplifications made by the pass `RefinePublicReturn`
currently only happens if the tensor in question only has one
user. However, the current method of checking this does not correctly
handle the case of a user having multiple uses of the same
tensor. This commit makes sure only unique users are considered.
This is a first step towards formalizing the set of ops in our backend
contract. The goal is to eventually formalize `torch` dialect ops into 3
categories:
1. Legal in backend contract
2. Illegal in backend contract
3. Conditionally legal in backend contract
The "conditionally legal" set are the ops that we can optionally
decompose for backends.
This patch adds relevant pass options for this throughout the compiler,
in preparation for a new set of traits which will formalize this
classification.
This introduces a new pass LowerToBackendContract (better name very
welcome) which performs the bulk of the simplifications that we do,
such as
- shape refinement
- dtype refinement
- maximizing value semantics
- inlining global slots
- decomposing complex ops
The key difference from before is that it iterates the set of
transformations, which can help to break a number of "catch-22" issues
where one simplification depends on another, the latest example being
here:
https://github.com/llvm/torch-mlir/issues/1131
This also exposed that RefineTypes was sometimes crashing/asserting for
certain inputs. This commit hardens it a bit.
Rather than a per-global-slot initializer region, we now have one for
the whole module. For example, it might look like this:
```
torch.global_slot "private" @tensor : !torch.tensor
torch.global_slot "private" @list : !torch.list<tensor>
torch.global_slot.module_initializer {
%0 = torch.tensor.literal(dense<0.0> : tensor<f32>) : !torch.tensor
%1 = torch.prim.ListConstruct %0 : (!torch.tensor) -> !torch.list<tensor>
torch.initialize.global_slots [
@tensor(%0 : !torch.tensor)
@list(%1 : !torch.list<tensor>)
]
}
```
This new structure allows GlobalizeObjectGraph to create the initializer in a
much simpler way, avoiding the need to reason about whether different slots
alias each other. Reasoning about whether slots alias each other now is the
responsibility of InlineGlobalSlots, which has to do a much more complicated
analysis, implemented using MLIR's dataflow analysis framework.
Recommended review order:
- Check out the new IR constructs in the .mlir files of various passes
- Op definitions (*.td)
- Changes to GlobalizeObjectGraph pass.
- InlineGlobalSlots pass (~total rewrite)
- Misc changes:
- Moving torchMlirAdjustStaticInformation for sharing with C++ code.
- EraseModuleInitializer pass
To make this a bit nicer, it would be good to have a `torch.module` op
with an initializer region attached. That would be more invasive though.
This change has highlighted certain aspects of our project layering
which are worth calling out. None of our backends can handle global
slots, so we enforce that there are no global slots before backend
lowering. At an earlier stage in the project, we had aspirations of
transparently handling mutable global state and such, but for reasons
described below, that is no longer a goal. So really global slots should
be seen as a progressive lowering step as part of inlining all the
IValue's in the original program (GlobalizeObjectGraph is also one such
step).
Over time, with insights from work like IREE-JAX, it has become clear
that there isn't a reliable programming model we can compile for users
where we just transparently handle mutable global state (and some other
things, like lists and dictionaries). There is a need for an "outer
program" that orchestrates more restricted subroutines of the kind we
can handle in our compile flow here. The benefit of that is that it
decouples considerations like shapes, dtypes, etc. from the program
constructs used in the outer program. As long as the outer program can
efficiently invoke (pipelining/async/etc.) high-performance
data-parallel numerical subroutines of the kind we compile in our flow
here, then there is a complete programming model. This is also
consistent with the direction of upstream PyTorch which is becoming more
tracing-based (which inherently loses a lot of program structure, which
then has to be applied back with an "outer program" orchestrating the
traced subroutines).
- Includes a canonicalizer for `aten.add.t`needed for successfully lowering the shape function
- Only offers support for statically sized index tensors when there is more than one
- Dynamic shape support remains for single indexing tensors
This commit adds verifiers to the ops `ToBuiltinTensorOp` and
`FromBuiltinTensorOp` that make sure that the input and output have
the same shape and data type.
This commit adds the decomposition for `aten.var.dim` op.
This commit also make changes in the decomposition for `aten.var` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This patch adds a new pass `torch-verify-conversion-to-value-semantics`,
which looks for non-value semantics tensors to catch such tensors early
during compilation.
This pass requires `torch-refine-public-return` pass to ensure that
return operations are updated to use value tensors, followed by the
canonicalize pass to remove any dead ops that may use or produce
non-value tensors.
Prior to this patch, the canonicalizers for `AtenSizeOp` and
`AtenSizeIntOp` succeeded only if the tensor operand's type information
included the size of the requested dimension(s). We can extend the set
of optimizable cases by propagating types across operations whose result
type matches the input tensor type.
Specifically, this patch enables the canonicalizers for `AtenSizeOp` and
`AtenSizeIntOp` to see past `tensor_static_info_cast`,
`copy.to_vtensor`, and `copy.to_tensor` ops until it reaches the first
op whose result type contains size information for the requested
dimensions, with a maximum bound of 6 parent lookups to avoid indefinite
compilation times. All other encountered ops cause the canonicalizer to
give up.
Prior to this patch, the code in the `torch-simplify-shape-calculations`
pass iterated on the uses of an op's result while also modifying the
value. This caused the iterator to get invalidated, thus terminating
the loop early and producing incorrect IR. This patch makes use of
`llvm::make_early_inc_range()` to ensure that the iterator is not
invalidated while executing the loop body.
This commit does three things:
1. Reverts some of the shape lib changes merged in
https://github.com/llvm/torch-mlir/pull/844
2. Updates the signature of `aten.sum_dim_IntList` that was recently
updated in
23bdb570cf
3. Replaces `aten.zero.functional` with `aten.zero`, updated in 960758b0b7
`aten.select_scatter` op.
This commit adds:
1. Lowering of `aten.slice_scatter` op into `tensor.insert_slice`
op.
2. Decomposes the `aten.select_scatter` op into `aten.slice_scater`
op.
Signed-Off-By: Prateek Gupta <gprateek93@gmail.com>
The canonicalizer converts `torch.prim.dtype` ops into integer constants
for valid types, but the type may not be known until type refinement is
complete. However, type refinement cannot make progress until
`torch.prim.dtype` ops have been resolved to their corresponding integer
constants, thus creating a circular dependency.
This patch creates a tight coupling between type refinement and the
lowering of `torch.prim.dtype` ops by handling such ops as they are
encountered during type refinement. The unit test in this patch aims to
check whether the type refinement pass can now handle chains of
operations that alternate between type construction and type refinement.
A prior patch (63538de2) that added support for bfloat16 type did not
add the canonicalization pattern to fold `torch.prim.dtype` operations
on bfloat16 tensors into the integer constant 15. This patch fixes the
problem.
In the `pyhpc_turbulent_kinetic_energy` TorchBench benchmark, the shape
calculation occurs inside loops, but because `DropShapeCalculationsPass`
does not explicitly mark the Torch dialect as legal, the pass execution
fails.
This patch adds Torch to the list of legal dialects, and adds a test to
validate the translation.
* [MLIR][TORCH] Add folder for torch_c.from_i64 & torch_c.to_i64
* add unit tests for each individual fold
* fix failure of NumelZeroRankModule & TestMultipleTensorAndPrimitiveTypesReturn
This commit decomposes `aten.baddbmm` op into `aten.bmm`,
`aten.mul.Scalar`, and `aten.add.Tensor` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds the decomposition of `aten.adaptive_avg_pool2d` op into
`aten.avg_pool2d` op. The current decomposition only supports cases where
input size is equal to the output size.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
In addition to updating the llvm-project submodule, this patch also:
1. updates shape functions and tests so that `func` and `call`
operations refer to the `func` dialect
2. avoid duplicate registration of dialects
The op `aten.rand_like` was missing a shape function, unit tests, and
the `dtype` argument was being ignored in its decomposition. This
commit fixes all three things.
Fix the type promotion code for scalar only operation to return
TorchType which is the type tracked in ValueKnowledge.scalarType.
- Fix `getPromotedResultScalarType` to return Torch type.
- Add `getBuiltInTypeForTorchScalar` helper to convert scalar type
to builtin type before passing to the next level type promotion
helper `updateResultTypeState`.
- Add `setScalarType` helper to make setting ValueKnowledge.scalarType
easier.
This commit adds lowering of `aten.ge.float`, `aten.ge.float_int`,
`aten.ne.float_int`, `aten.gt.float_int` and `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py and scalar_comparison.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The main changes are:
- Added `ValueKnowledge.scalarType` to track scalar type information.
- Added `ValueKnowledge.kind` to indicate the value kind.
- Modified the meet and join helper functions. The ValueKnowledge has
slightly more complicated state now so the meet and join function need
to look at the `kind` field in addition to just the type field.
This commit decomposes `aten.to.dtype_layout` op into `aten.to.dtype` op.
This commit also fixes the formatting for the file type_conversion.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit fixes the `ConstantPad2dStaticModule` test case by adding
the lowering of `aten.pad` operation. Previously the test case
mapped to `aten.constant_pad_nd` operation.
The `aten.pad` now decomposes into `aten.constant_pad_nd` operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
This commit adds lowering of `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
Prior to this patch, the result type for several tensor operations could
only be float32, float64, or null. This patch adds bf16 to the list of
allowed result types.
The issue was in the canonicalizer for torch.aten.ge.int -- in cases
where the operands were swapped, it would miscompile. This issue is
fixed and folding support generalized to `torch.aten.size.int < 0` as
well.
Fixes#716
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.
This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287
Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
that derefines to a UnionType (this also fixes#664).
There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
The reified code to compute the shape of torch.aten.constant_pad_nd
uses negative indices when setting list elements. This was not
converted to a positive offset in one place in SimplifyShapeCalculations
which prevented computation of the static shape.
The logic in the rewriting phase had a bug in case of a read-only op
coming before mutation ops. The logic would use the op itself as the
"latest literal", but that is not correct, because later on we replace
the op itself with the *final* "latest literal", assuming that all uses
of the op have been rewritten -- that was working in general, except for
any read-only ops at the beginning.
Big thanks to @ljfitz for the tiny reproducer!
Fixes#704
- This commit adds decomposition of `aten.dropout` op. It also covers the
training mode of the same op.
- It also adds lowering of `aten.sub.float` op.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.
This commit also adds the lowering of `ValsemVariantAtenCopyOp`.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds support for type refinement when
`torch.tensor_static_info_cast`s are involved, even when there are
users of the casted tensor that don't allow type refinements.
Originally the canonicalization pattern for
`torch.tensor_static_info_cast` would check if all the users of the
casted tensor allowed type refinements before making any changes. This
means that if at least one of the users did not allow type
refinements, the pattern would fail. This becomes an issue when doing
shape calculations because the calculations need the shape information
of each input tensor to be available before the calculation can be
simplified.
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.
This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.
This commit also updates the `torch.bincount` op test cases.
The term "pseudo" is very vague and was getting confusing (I felt I had
to explain it in every comment referencing it). Instead, rework the
"pseudo" ops to instead be named:
- MLIR Syntax: `torch.valsem.*`
- C++ / ODS: `ValsemVariant*Op`
This makes it clear what the concept is, and avoids confusion with other
things that might be called "pseudo", since these are very specific and
should be 100% consistently named w.r.t. the non-valsem-variant ops that
they correspond to.
This leads to much more succinct types in many cases:
```
!torch.list<!torch.int>
!torch.list<int>
!torch.tuple<!torch.list<!torch.int>, !torch.list<!torch.int>>
!torch.tuple<list<int>, list<int>>
!torch.optional<!torch.list<!torch.int>>
!torch.optional<list<int>>
!torch.list<list<list<tensor>>>
!torch.list<!torch.list<!torch.list<!torch.tensor>>>
```
I would like to take this further and allow omitting the `!torch.`
prefix in all cases, but that's harder -- for example, we currently use
`FuncOp` for functions, and so I don't think we can customize the
printing there. It seems like it will be a longer road to getting that
level of customization.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.
This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.
Recommended review order:
1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
`canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.
Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).
Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
This commit replaces the two rewrite patterns of
maximize-value-semantics with a single pattern that captures the
behavior of both as well as other edge cases previously not
supported. The new pattern works by first performing alias analysis on
a subgraph to see if pattern is applicable, then rewriting all
non-value tensors to value tensors in a single go.
- This commit adds E2E support for `aten.rand_like` and
`aten.bernoulli_.Tensor` ops.
- The `aten.bernoulli(x)` was implemented as:
`aten.bernoulli(x) = rand_like(x) < 0.5`, assuming 0.5 as default
probability, whereas according to the pytorch documentation:
https://pytorch.org/docs/stable/generated/torch.bernoulli.html#torch.bernoulli
the input x in `aten.bernoulli(x)` is itself a tensor containing
probabilities to be used for drawing the binary random number.
- So this commit fixes the `aten.bernoulli(x)` implementation as:
`aten.bernoulli(x) = rand_like(x) < x`.
- It also fixes the case where the input to `aten.bernoulli_.float` is
an integer tensor. In this case the input must be casted to float type
before passing it as operand to `aten.rand_like` op.
`aten.bernoulli_.float(x, p) = rand_like(float(x)) < p`.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds the invariant to the op `torch.overwrite.tensor.contents` that
both of its operands have the same shape and size. In order to
maintain the invariant, special handling of this op is added to the
`RefineTypes` pass.
This commit adds handling to the `maximize-value-semantics` pass for
the case where a view-like op depends on a tensor that has been
overwritten by a value tensor. The approach for removing the
dependency is to change the input to the view-like op to be a copy of
the value tensor that is being used to overwrite.
This commit also removes `AtenFill_ScalarOp` and
`AtenBernoulli_FloatOp` from the list of view-like ops, since these
ops now have a corresponding op with value semantics into which they
get converted in the `reduce-op-variants` pass.
- This commit decomposes the `aten.batch_norm` op into the
`aten.native_batch_norm` op, instead of lowering it to the
`linalg.generic` op.
- It also adds run-time asserts in the `aten.native_batch_norm` lowering
to make sure that the shape of the weight, bias, running_mean, and
running_var must match the num of features.
- Since the `aten.native_batch_norm` op is not supported at TOSA backend,
all the modules that are dependent on the `aten.native_batch_norm` op
will fail and therefore they should be removed from the TOSA `passing`
set.
- It also moves `checkNotNone` to utility.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.
Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
This commit adds the op `PseudoAtenBernoulliFloatOp` that represents
`AtenBernoulli_FloatOp` without the underscore. This is needed to make
sure that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value semantics
correctly.
- This commit adds lowering of `aten.Bool.Tensor` and
`aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
`aten.Float.Tensor` op, it folds to the scalar number.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
The added e2e maxpool testcase from #545 was not getting a static shape
due to an unfolded prim.If when RefineTypes was called. This was because
of unfolded torch.iaten.__is__ and torch.prim.unchecked_cast operators
with torch.derefine operands.