Credit to @vivekkhandelwal1 for finding the necessary changes.
Summary of changes:
- Switch Tosa_IntArrayAttr[N], Tosa_IntArrayAttrUpto[N] to DenseI64ArrayAttr.
- Replace kNoIterationLimit with kNoLimit. (https://reviews.llvm.org/D140525)
- Add dependency on MhloPasses when MHLO is enabled
- Specify result type when using mhlo::DotOp
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked. Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result. This patch reverts the
commit to make the post-merge builds green again.
Summary of changes:
- LLVM now includes <optional> instead of "llvm/ADT/Optional.h" in most
(although not all) places
(https://reviews.llvm.org/rG541ef3d61e9341cd38420c0dbca9250c4d0ea04c).
This patch replaces the affected instances of `llvm::Optional` with
`std::optional`.
- In the usages of llvm::Optional that remain, llvm::Optional::value()
is deprecated, so this patch replaces them with a dereference.
Summary of changes:
- Replace `llvm::None` with `std::nullopt`, since the former is deprecated
(https://reviews.llvm.org/D139763)
- Use setter for symbol visibility instead of passing string attribute when
creating FuncOp
Currently `getTensorRank` returns -1 if it was unable to get the rank
of the tensor. However, not every use in the codebase was checking the
return value, and in some cases, the return value was casted to
unsigned leading to some infinte loops when an unranked tensor reached
a decomposition.
This commit changes the return of `getTensorRank` to
`Optional<unsigned>` to make it clear to the user that the function
can fail.
This commit also changes a couple of for loops that iterate a vector
in reverse order that can potentially become infinite loops into
range-based for loops.
A circular dependency was introduced in e7edcc62fd.
Specifically, the `makeShapeLLVMCompatible` and `makeShapeTorchCompatible` utilities were being called from `lib/Dialect/Torch/IR/TorchTypes.cpp` and `lib/Dialect/Torch/IR/TorchOps.cpp` defined under the `:TorchMLIRTorchDialect` bazel target, leading it to take a dependency on `:TorchMLIRConversionUtils` which already depends on `:TorchMLIRTorchDialect`, hence creating a circular dependency.
This commit resolves the same by moving said utilities from `lib/Conversion/Utils/Utils.cpp` to `lib/Dialect/Torch/Utils/Utils.cpp`. Please LMK if there's a better way to fix this and I will update the code.
This commit also adds the required targets to support building the new conversions from Torch to ML Program dialect that was introduced in f416953600.
Bazel build GHA triggered manually to verify: https://github.com/sjain-stanford/torch-mlir/actions/runs/3645944517
- Support for non-prefixed accessors has been removed. See:
https://reviews.llvm.org/D136727
- Rename `operands` to `methodOperands` in `prim.CallMethod` since the
name `operands` overlaps with a builtin method name. See:
https://reviews.llvm.org/D136727
- Add passes in refbackend to lower memref.subview. See:
https://reviews.llvm.org/D136377
- Replace `CopyToValueTensorOps` first in `RewriteViewLikeSubgraph` in
maximize-value-semantics.
The current implementation of the `RewriteViewLikeSubgraph` pass in
maximize-value-semantics creates temporarily invalid IR. In
particular, given a forward slice starting from a
`CopyToNonValueTensorOp` and ending in `CopyToValueTensorOp`s, the
pass first replaces all uses of the `CopyToNonValueTensorOp` with
its operand, which results in all the `CopyToValueTensorOp` users
having their operand have type `!torch.vtensor`, which is invalid.
The correct way to do things is to first replace all the
`CopyToValueTensorOp`s with their operand, and then replace all uses
of the `CopyToNonValueTensorOp` with its operand.
This only started failing now because the generated accessor
`getOperand` for the `CopyToValueTensorOp` now returns a
`TypedValue<NonValueTensorType>`, which has an assert checking that
the value returned is of the expected type.
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Change ShapedType::kDynamicSize -> ShapedType::kDynamic
- llvm::NoneType has been deprecated, change convertScalarToDtype to use llvm::None
This commit replaces the LCG algorithm that was being used by the
`TorchToLinalg` lowering of `AtenUniformOp` to generate random numbers
with the `squares64` algorithm, for the LCG algorithm was producing
tensors that were highly correlated with one another.
Squares64 algorithm: https://arxiv.org/abs/2004.06278
Closes https://github.com/llvm/torch-mlir/issues/1608
Summary of changes:
- Replace call to `MemoryEffectOpInterface::hasNoEffect`
with `isMemoryEffectFree`.
- Make fix for the dynamic dims, since
`kDynamicSize` value changed to
`std::numeric_limits<int64_t>::min()` from `-1` in llvm
- `makeShapeLLVMCompatible` and `makeShapeTorchCompatible`
utilities convert shapes in order to remain consistent
with the Torch and MLIR semantics.
- Update tags
llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
-- aten.upsample_nearest2d.vec op is not present
owing to https://github.com/pytorch/pytorch/pull/85638
-- So this commit adds a lowering on aten.upsample_nearest2d.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
This commit renames the patterns used to match on lists of constant
values to `m_TorchListOfConstant{valueType}s`. This is needed to avoid
ambiguity for when `valueType` has `Optional` in it. In particular, it
makes it clear whether the values in the list are optional or the list
itself is optional.
* build: update llvm tag to 74fb770d
This commit makes the following changes needed to update bump LLVM:
+ replace usages of `tensor::createPadScalarOp`, see https://reviews.llvm.org/D136493
+ Update file checks
The parameter "supportFPInputOnly" of function createPoolingOp() is
supposed to be "supportNonFPInput", which was added to distinguish
between "MaxPool2d" and "AvgPool2d" op in #718
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
This commit makes the following changes needed to update bump LLVM:
- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>