Commit Graph

14 Commits (fd759e4b1f8c1f9d4d031d570b8048ecf8356790)

Author SHA1 Message Date
Rob Suderman afca88a058
[NFC] Change to *cast instead of .*cast variants (#3405)
Member casts have been deprecated. Changing over a bunch of the member
cast calls to the global templated variants to remove deprecation
warnings.
2024-05-30 23:45:13 -07:00
penguin_wwy 1f544c37d0
[NFC] Remove unused header files (#3386) 2024-05-30 14:30:36 +08:00
penguin_wwy 6679728c56
Fix deprecated uses of cast/dyn_cast/dyn_cast_or_null/isa (#3243)
Like #3130, gradually replace the deprecated code

https://github.com/llvm/mlir-www/blob/main/website/content/deprecation/_index.md#deprecated
2024-04-27 14:00:56 -07:00
Rob Suderman f97cd4893f
[torch] Improve shape inference for dynamic shapes (#3091)
Shapes can be processed as tensors to represent the set of dimensions.
As reshapes take a list of scalars this can result in a single dynamic
dimension blocking the adjacent static dimensions.

This pass attempts to de-couple tensor computations related to shapes
and propagate values to better support lowering scalar tensor
computations.
2024-04-02 16:19:57 -07:00
Rob Suderman 14b548f968
[torch] Improve shape inference for `torch-to-linalg` path for reshapes (#3055)
Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
2024-03-26 12:41:40 -07:00
Vivek Khandelwal d81747eadb
[MLIR][TORCH] Extend support for OnnxToLinalg lowering for Dropout and Div op (#2938)
Fixes https://github.com/nod-ai/SHARK-Turbine/issues/451,
https://github.com/nod-ai/SHARK-Turbine/issues/452
2024-02-27 11:02:05 +05:30
Stella Laurenzo 860be09a39
Elide dynamic broadcast checks when in strict symbolic shapes mode. (#2496)
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.

Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.

In the linalg pipeline, many runtime checks are elided when this returns
true.
2023-09-29 16:45:48 -07:00
Ramiro Leal-Cavazos dd35488da5
build: update llvm tag to 798fa4b4 (#1684)
- Support for non-prefixed accessors has been removed. See:
  https://reviews.llvm.org/D136727
- Rename `operands` to `methodOperands` in `prim.CallMethod` since the
  name `operands` overlaps with a builtin method name. See:
  https://reviews.llvm.org/D136727
- Add passes in refbackend to lower memref.subview. See:
  https://reviews.llvm.org/D136377
- Replace `CopyToValueTensorOps` first in `RewriteViewLikeSubgraph` in
  maximize-value-semantics.

  The current implementation of the `RewriteViewLikeSubgraph` pass in
  maximize-value-semantics creates temporarily invalid IR. In
  particular, given a forward slice starting from a
  `CopyToNonValueTensorOp` and ending in `CopyToValueTensorOp`s, the
  pass first replaces all uses of the `CopyToNonValueTensorOp` with
  its operand, which results in all the `CopyToValueTensorOp` users
  having their operand have type `!torch.vtensor`, which is invalid.

  The correct way to do things is to first replace all the
  `CopyToValueTensorOp`s with their operand, and then replace all uses
  of the `CopyToNonValueTensorOp` with its operand.

  This only started failing now because the generated accessor
  `getOperand` for the `CopyToValueTensorOp` now returns a
  `TypedValue<NonValueTensorType>`, which has an assert checking that
  the value returned is of the expected type.
2022-12-07 12:20:41 -08:00
Ramiro Leal-Cavazos 82a3860e25
build: update llvm tag to 4546397e (#1502)
This commit makes the following changes needed to update bump LLVM:

- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)

Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>

Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
2022-10-18 04:22:53 +00:00
Ashay Rane faa9a78e38
build: update llvm tag to 6f46ff37 (#1448)
Summary of changes:
 - Updated references to the Arith dialect
   (https://reviews.llvm.org/D134762)
 - Switched to prefixed accessors for MemRef dialect
   (https://reviews.llvm.org/D134995)
 - Fixed warnings about signed/unsigned comparisons, ignored return
   values, and unused variables
2022-10-05 08:28:06 -05:00
AmosLewis 940959589b [MLIR][TORCH] Add Byte and Char Dtype support 2022-09-30 13:19:31 +05:30
Vivek Khandelwal c69a1e5688 [MLIR][TORCH] Add E2E support for ScalarImplicit, Int.Scalar op
This commit adds lowering of `aten.ScalarImplicit` and `aten.Int.Scalar` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-10 22:40:49 +05:30
Prashant Kumar 5cdef0213d [LINALG] Bug fix i64 vs i32 type comparison.
Comparing index type instead of integer types solves the problem.
2022-04-22 08:09:58 +05:30
Sean Silva 5d9222383c Split up TorchToLinalg.cpp
This helps keep things organized and also exposes more parallelism to
the build system. It seems though that most of the compile time is
actually spent in the headers though, so the wall time doesn't decrease
as much as I had hoped (and now that the headers are being included
multiple times, the cpu time actually increases a lot, sadly -- will try
to dig into this).
2022-03-14 10:19:41 -07:00