- TensorFromElementsOp -> tensor::FromElementsOp
- `cmpi "eq", ...` -> `cmpi eq, ...`. Same for `cmpf`
- syntax change for private func ops
- some changes to the python bindings
* Most updates are mechanical except:
* python/npcomp/__init__.py and python/NpcompModule.cpp: New init/registration bits to replace some automatic things being done in the old bindings. Also an annoying linkage hack that I'll need to triage next.
* NpcompModule.cpp: New python helpers for custom types and other hard to reach items (for the new bindings).
* PybindUtils.h: Extended type casting so that the local extension can directly exchange Mlir* C types.
* python/npcomp/dialects/*: Build support and ODS bindings for local dialects.
* mlir_utils.py: Defines an ImportContext to replace the old/bad "Helper" class that tracked locations, and insertion points. This has a number of methods on it that would be good candidates to think about better ways to do them upstream.
* Also hoisted a few stand-alone samples to dedicated unit tests as they covered important things.
* More cleanup can be done, but keeping this patch as mechanical as possible to stay in NFC land (this is big enough).
* Going through TODOs on the PyTorch side, this is a big cause of them (not being able to have constants for signed/unsigned).
* Added complex while in here since we're at the phase where it is better to just have things complete than partially done.
* Organizes the BasicPyOps.td file by function.
* Renamed `to_boolean` -> `as_predicate_value` (trying to consistently use "predicate" to refer to i1/low-level types and Bool/Boolean to refer to Python bool types).
* Incorporates source fixes.
* Uses upstream pybind11 detection logic.
* Patches CI.
* This may break the CI, which will need to be fixed manually in a followup.
* IREE doesn't have proper install support, so there is some temporary hoaky hacking in our CMakeLists.txt to shuttle some symlinks around.
* Reworked the original numpy e2e with IREE test to pipe through iree-translate.
* Removed all of the C++-level dependencies.
* Will generalize and apply to the PyTorch backend in a followup.
* A bit gross because I took the chance to upgrade all of the backend bits to the new MLIR Python bindings and we still co-mingle the old and new for now.
* Since the Python created PassManagers are configured for explicit nesting, I had to upgrade some of the pass pipelines to be explicit.
* The demo in mul_maximum_e2e.py now compiles, runs through PyTorch and through the JIT, prints and asserts the same results.
* I am not claiming that this is the prettiest API in this patch: consider that this is just directly using low-level APIs and there should be an intervening high level API.
* Exposes the op registry via a get_registered_ops method.
* Moves the aten dialect generation scripts in prep for integrating them with this facility.
* Still need to add a systematic mechanism for discovering gradient ops.
* Work needed on the various _ suffixed inplace ops.
* Other randoms still not mapped.
* Outside of this commit, I do have enough commented/reworked to roughly build but that will take another handful of commits to get going.
* Add a new python script to auto-generate ATen op ODS definitions.
* There is still some work on some of the ops to annotate correct types.
* The ODS is not actually included into the dialect yet, but I'd like to commit it so that we can track changes.
* Will reconcile this with the ops produced by the existing script in a followup. Still need to do some more iteration to reach parity.
* This extracts metadata from python invocations (nearly) sufficient to generate ODS and a Torch IR translation table for most of the ops.
* It also has the side effect of creating a data structure with meaningfully runnable examples suitable for an automated regression test.
* There are some ops that are sufficiently complex/weird (like _convolution) that we'll just manually handle those.
* See example output: https://gist.github.com/stellaraccident/60a58457b15e9184e224fa98a2658769
This patch adds a pytorch interface to npcomp. This interface is modeled
after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar
to a gpu device or the xla backend). Usage is intended to be something like:
dev = torch_mlir.mlir_device()
t0 = torch.randn((4,4), device=dev)
t1 = torch.randn((4,4), device=dev)
t2 = t0 + t1
t2_mlir = torch_mlir.get_mlir( t2 )
t2_cpu = t2.to('cpu')
In this case t2_cpu would contain the result of the computation, and t2_mlir
contains the mlir description of the computation. Note that this also
properly returns backward paths synthesized by pytorch. There are several
parts of this:
1) A tensor type (implemented by tensor.* and tensor_impl.*)
2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*)
3) a temporary IR (implemented by ir.cpp)
There is also a reference lowering directly from the ATen dialect to C
function calls consisting of two parts:
1) The driver that uses the IR to generate MLIR, run Passes and compile the
result using mlir::ExecutionEngine (implemented by jit.cpp and
mlir_gen.cpp)
2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations
are implemented by callbacks into the torch C++ libraries.
Some aspects of this are known to be less than optimal, in particular:
1) There's some function definitions that don't live in the file corresponding
to their declaration.
2) More aspects of this (e.g. the IR) seem like they should be automatically
generated.
3) It's unclear to me how much of the 'IR' is actually necessary, or whether
MLIR could be created on the fly.
Note that this code is licensed in a way similar to pytorch, with the
intention that eventually (when npcomp reaches some maturity) it should be
pushed there. (see frontends/pytorch/LICENSE) The code is also structured
much closer to the pytorch coding style than the LLVM coding style.
* Enables e2e test.
* With what I've learned in upstream about test directory layout, I can consolidate most of the separate directories we have for these things. Will do that in a followup.
* Not pleased with the LLVM global initialization depends but serviceable for now.
* This starts to lay down the infra for reasoning about calls
* Adds the importer code to generate IR for function calls of compiler recognized static functions.
* Adds python bindings for invoking flow, HAL, and VM lowering pipelines.
* Adds pythong bindings for translating to VM module flatbuffer.
* Adds a new backend_test/iree directory and configure lit to find the IREE python rt bindings.
* Open code a simple_invoke.py that exercises the whole pipeline (need real APIs for a lot of this).
* Fails when invoking the function because I never implemented argument marshaling for scalars :(
* Plenty of stuff to do tomorrow.
* Conversions to std for numeric binary expressions, numeric to_boolean, and numeric comparisons.
* Added folders to constant ops to comply with requirements of the pass system.
* Extended the frontend with parameter/result annotation processing for primitives (can specify types for function arguments).
* Added (empty) directory/sources for IREEVM conversions. These are only enabled if IREE is enabled.
* Adds a new to_boolean op to evaluate a value as a truthy i1
* Uses cascading scf.if ops to properly evaluate and/or sequences (short-circuit and original value returning)
* Adds a helper to construct select ops and uses it to implement 'not'
* Makes the OpBuilder an input to the DialectHelper.
* The containment hierarchy can be simplified further.
* There are still only a few places this is instantiated, so opting for working over great.