torch-mlir/e2e_testing/torchscript
Liam Fitzpatrick 2414bdb1f0 Linalg lowering for aten.conv2d(bias=True)
Previously aten.conv2d was only lowered if there was no bias.
Here lowering is extended to support bias.
2021-12-08 14:44:36 -08:00
..
argmax.py add argmax lowering 2021-10-13 14:31:16 -04:00
backprop.py Add e2e test for aten.log_softmax_back_data op 2021-11-19 00:08:28 +05:30
basic.py Add support for passing & returning memref of bool types 2021-12-09 00:23:38 +05:30
batchnorm.py E2e support for layernorm. 2021-10-04 14:15:13 -04:00
conv.py Linalg lowering for aten.conv2d(bias=True) 2021-12-08 14:44:36 -08:00
elementwise.py Add scalar type promotion for mul and div (#454) 2021-12-03 13:51:25 -06:00
main.py Add aten::nll_loss_forward op lowering. 2021-12-07 17:11:08 +05:30
matmul.py Add lowering of aten.matmul op. 2021-10-26 12:45:09 -04:00
mlp.py Support aten::linear with rank 3 inputs 2021-11-18 22:15:04 +05:30
nll_loss.py Add aten::nll_loss_forward op lowering. 2021-12-07 17:11:08 +05:30
quantized_models.py Dual license the torch-mlir project. 2021-10-01 10:46:08 -07:00
reduction.py [MLIR][TORCH] Add E2E support for aten.mean and aten.numel op. 2021-12-02 11:51:13 +05:30
scalar.py add aten.add.int lowering in TorchToStd 2021-11-29 13:22:50 -05:00
slice_like.py Add lowering for slice and selectInt (#398) 2021-12-02 22:09:21 -06:00
squeeze.py [MLIR][TORCH] Add E2E support for `aten.squeeze` op 2021-11-30 23:00:28 +05:30
type_conversion.py Add convertScalarToDtype helper. 2021-11-08 17:50:52 -05:00
type_promotion.py Add scalar type promotion for mul and div (#454) 2021-12-03 13:51:25 -06:00
view.py [MLIR][TORCH] Add E2E support for `torch.aten.view` 2021-10-29 22:33:10 +05:30
vision_models.py Add min/max/clamp support. 2021-10-27 13:29:21 -07:00
xfail_sets.py Add support for passing & returning memref of bool types 2021-12-09 00:23:38 +05:30