mirror of https://github.com/llvm/torch-mlir
fd759e4b1f
Supports the result with dynamic shape and scalar indices like ``` func.func @test_gather_scalar(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[], si64>) -> !torch.vtensor<[?,?],f32> attributes {torch.onnx_meta.opset_version = 13 : si64} { %0 = torch.operator "onnx.Gather"(%arg0, %arg1) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[], si64>) -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } ``` `Torch::AtenSqueezeOp` is referring to the result shape, so it will failed on lowering if the result shape is dynamic. |
||
---|---|---|
.. | ||
TorchConversionToMLProgram | ||
TorchOnnxToTorch | ||
TorchToArith | ||
TorchToLinalg | ||
TorchToSCF | ||
TorchToStablehlo | ||
TorchToTMTensor | ||
TorchToTensor | ||
TorchToTosa | ||
Utils | ||
CMakeLists.txt | ||
PassDetail.h | ||
Passes.cpp |