mirror of https://github.com/llvm/torch-mlir
219 lines
6.2 KiB
Python
219 lines
6.2 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
# Also available under a BSD-style license. See LICENSE.
|
|
|
|
import torch
|
|
|
|
from torch_mlir_e2e_test.torchscript.framework import TestUtils
|
|
from torch_mlir_e2e_test.torchscript.registry import register_test_case
|
|
from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceSumModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.sum(a)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: ReduceSumModule())
|
|
def ReduceSumModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5))
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceSumDtypeModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float64, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.sum(a, dtype=torch.float32)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: ReduceSumDtypeModule())
|
|
def ReduceSumDtypeModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5).to(torch.float64))
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceSumDimIntListModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.sum(a, (0, 1))
|
|
|
|
|
|
@register_test_case(module_factory=lambda: ReduceSumDimIntListModule())
|
|
def ReduceSumDimIntListModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5))
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceSumDimIntListDtypeModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float64, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.sum(a, (0, 1), dtype=torch.float32)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: ReduceSumDimIntListDtypeModule())
|
|
def ReduceSumDimIntListDtypeModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5).to(torch.float64))
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceSumDimIntListKeepDimModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.sum(a, (1, 2), keepdim=True)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: ReduceSumDimIntListKeepDimModule())
|
|
def ReduceSumDimIntListKeepDimModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5))
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceMeanDtypeModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float64, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.mean(a, dtype=torch.float32)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: ReduceMeanDtypeModule())
|
|
def ReduceMeanDtypeModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5).to(torch.float64))
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceMaxAlongDim(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float64, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.ops.aten.max(a, 1)[0]
|
|
|
|
|
|
@register_test_case(module_factory=lambda: ReduceMaxAlongDim())
|
|
def ReduceMaxAlongDim_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5).to(torch.float64))
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceMaxAlongDimNegative(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float64, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.ops.aten.max(a, 1)[0]
|
|
|
|
|
|
@register_test_case(module_factory=lambda: ReduceMaxAlongDimNegative())
|
|
def ReduceMaxAlongDimNegative_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5, low=-10, high=10).to(torch.float64))
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceMaxKeepDim(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float64, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.ops.aten.max(a, 1, keepdim=True)[1]
|
|
|
|
|
|
@register_test_case(module_factory=lambda: ReduceMaxKeepDim())
|
|
def ReduceMaxKeepDim_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5).to(torch.float64))
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceMaxKeepDimReturnBoth(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.ops.aten.max(a, 1, keepdim=True)
|
|
|
|
@register_test_case(module_factory=lambda: ReduceMaxKeepDimReturnBoth())
|
|
def ReduceMaxKeepDimReturnBoth_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5, low=-10, high=-5))
|
|
|
|
# ==============================================================================
|
|
|
|
class ReduceMaxAllDims(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, a):
|
|
return torch.ops.aten.max(a)
|
|
|
|
@register_test_case(module_factory=lambda: ReduceMaxAllDims())
|
|
def ReduceMaxAllDims_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(3, 4, 5, low=-10, high=-5))
|