mirror of https://github.com/llvm/torch-mlir
147 lines
5.9 KiB
C++
147 lines
5.9 KiB
C++
//===- MaximizeValueSemantics.cpp --------------------------------*- C++-*-===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
namespace {
|
|
class AbstractlyInterpretCopyToNonValueTensorOpUsersWithinABlock
|
|
: public OpRewritePattern<CopyToNonValueTensorOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(CopyToNonValueTensorOp copy,
|
|
PatternRewriter &rewriter) const override {
|
|
SmallVector<Operation *> users;
|
|
// See if our limited form of analysis is even applicatble.
|
|
for (Operation *user : copy.getResult().getUsers()) {
|
|
// We can only analyze within a single basic block.
|
|
if (user->getBlock() != copy->getBlock())
|
|
return failure();
|
|
// We can only analyze these ops.
|
|
if (!isa<CopyToValueTensorOp, OverwriteTensorOp>(user))
|
|
return failure();
|
|
users.push_back(user);
|
|
}
|
|
// Sort by order in the block, so we can abstractly interpret the ops.
|
|
llvm::sort(users, [](Operation *lhs, Operation *rhs) {
|
|
return lhs->isBeforeInBlock(rhs);
|
|
});
|
|
// Do an abstract interpretation within the block.
|
|
// We track the current value tensor that holds the same contents as the
|
|
// non-value tensor at each program point as we walk forward.
|
|
Value currentlyHeldValueTensor = copy.getOperand();
|
|
for (Operation *user : users) {
|
|
if (auto copyToValueTensor = dyn_cast<CopyToValueTensorOp>(user)) {
|
|
rewriter.replaceOp(copyToValueTensor, {currentlyHeldValueTensor});
|
|
} else if (auto overwriteTensor = dyn_cast<OverwriteTensorOp>(user)) {
|
|
currentlyHeldValueTensor = overwriteTensor.value();
|
|
rewriter.eraseOp(overwriteTensor);
|
|
} else {
|
|
llvm_unreachable("only those ops supported!");
|
|
}
|
|
}
|
|
rewriter.eraseOp(copy);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Calculate a forward slice starting from a CopyToNonValueTensorOp
|
|
// and ending at CopyToValueTensorOp's. If all intervening ops
|
|
// are just view-like operations (i.e. no mutation), then we can trivially
|
|
// convert them all to value semantics.
|
|
class RewriteViewLikeSubgraph
|
|
: public OpRewritePattern<CopyToNonValueTensorOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(CopyToNonValueTensorOp copy,
|
|
PatternRewriter &rewriter) const override {
|
|
// Find a subgraph starting with this CopyToNonValueTensorOp, and
|
|
// terminating at CopyToValueTensorOp's, possibly with intervening view-like
|
|
// ops.
|
|
// This also catches the special case of a CopyToNonValueTensorOp that
|
|
// trivially feeds into CopyToValueTensorOp's.
|
|
SmallVector<Operation *> viewLikeOps;
|
|
SmallVector<CopyToValueTensorOp> copyToValueTensorOps;
|
|
auto workList = llvm::to_vector<6>(copy.getResult().getUsers());
|
|
// We currently only support view-like ops with one tensor input and one
|
|
// tensor output, meaning that the tensor use-def chains form a tree.
|
|
// This will not be the case for an op like `torch.aten.view_as`, so
|
|
// we will need to add a set to prune duplicate visitation.
|
|
while (!workList.empty()) {
|
|
Operation *op = workList.pop_back_val();
|
|
if (auto copyToValueTensor = dyn_cast<CopyToValueTensorOp>(op)) {
|
|
copyToValueTensorOps.push_back(copyToValueTensor);
|
|
} else if (isa<AtenSqueezeOp, AtenSqueezeDimOp, AtenUnsqueezeOp,
|
|
AtenFlattenUsingIntsOp, AtenTransposeIntOp,
|
|
TensorStaticInfoCastOp, AtenBroadcastToOp, AtenToDtypeOp,
|
|
AtenContiguousOp, AtenPermuteOp, AtenViewOp, AtenExpandOp,
|
|
AtenFill_ScalarOp, AtenSliceTensorOp, AtenSelectIntOp>(
|
|
op)) {
|
|
// AtenContiguousOp might return a view, so this is conservatively
|
|
// correct. We could potentially be more precise and identify the cases
|
|
// that it does not return a view and treat those as having value
|
|
// semantics.
|
|
viewLikeOps.push_back(op);
|
|
llvm::append_range(workList, op->getResult(0).getUsers());
|
|
} else {
|
|
return rewriter.notifyMatchFailure(
|
|
copy, "can only handle these transitive user ops");
|
|
}
|
|
}
|
|
|
|
copy.replaceAllUsesWith(copy.getOperand());
|
|
for (CopyToValueTensorOp op : copyToValueTensorOps)
|
|
rewriter.replaceOp(op, op.getOperand());
|
|
for (Operation *op : viewLikeOps) {
|
|
rewriter.updateRootInPlace(op, [&]() {
|
|
if (auto nonValueTensorType =
|
|
op->getResult(0).getType().dyn_cast<NonValueTensorType>()) {
|
|
op->getResult(0).setType(nonValueTensorType.getWithValueSemantics());
|
|
}
|
|
});
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
|
|
class MaximizeValueSemanticsPass
|
|
: public MaximizeValueSemanticsBase<MaximizeValueSemanticsPass> {
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
auto func = getOperation();
|
|
|
|
RewritePatternSet patterns(context);
|
|
patterns.insert<AbstractlyInterpretCopyToNonValueTensorOpUsersWithinABlock,
|
|
RewriteViewLikeSubgraph>(context);
|
|
(void)applyPatternsAndFoldGreedily(func, std::move(patterns));
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<FuncOp>>
|
|
mlir::torch::Torch::createMaximizeValueSemanticsPass() {
|
|
return std::make_unique<MaximizeValueSemanticsPass>();
|
|
}
|