mirror of https://github.com/llvm/torch-mlir
43 lines
1.6 KiB
Python
43 lines
1.6 KiB
Python
# -*- Python -*-
|
|
# This file is licensed under a pytorch-style license
|
|
# See frontends/pytorch/LICENSE for license information.
|
|
|
|
import typing
|
|
|
|
import torch
|
|
import torch_mlir
|
|
|
|
# RUN: %PYTHON %s | npcomp-opt | FileCheck %s
|
|
|
|
mb = torch_mlir.ModuleBuilder()
|
|
|
|
class TestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.t1 = torch.ones(1)
|
|
self.t2 = torch.ones(1)
|
|
|
|
# CHECK-LABEL: func{{.*}}TestModule.forward{{.*}}(
|
|
# CHECK-SAME: %[[SELF:.*]]: !torch.nn.Module<"{{.*}}">) -> !basicpy.NoneType {
|
|
def forward(self):
|
|
# CHECK: %[[T2:.*]] = torch.prim.GetAttr %[[SELF]]["t2"]
|
|
# CHECK: torch.prim.SetAttr %[[SELF]]["t1"] = %[[T2]]
|
|
self.t1 = self.t2
|
|
# CHECK: torch.prim.CallMethod %[[SELF]]["callee"] (%{{.*}}, %{{.*}})
|
|
self.callee(self.t1, self.t2)
|
|
# CHECK-LABEL: func{{.*}}TestModule.callee{{.*}}(
|
|
# CHECK-SAME: %[[SELF:.*]]: !torch.nn.Module<"{{.*}}">,
|
|
# CHECK-SAME: %[[X:.*]]: !numpy.ndarray<*:!numpy.any_dtype>,
|
|
# CHECK-SAME: %[[Y:.*]]: !numpy.ndarray<*:!numpy.any_dtype>
|
|
def callee(self, x, y):
|
|
# CHECK: %[[BYTES:.*]] = basicpy.bytes_constant "x"
|
|
# CHECK: torch.prim.Print(%[[BYTES]], %[[X]]) : !basicpy.BytesType, !numpy.ndarray<*:!numpy.any_dtype>
|
|
print("x", x)
|
|
pass
|
|
|
|
test_module = TestModule()
|
|
recursivescriptmodule = torch.jit.script(test_module)
|
|
# TODO: Automatically handle unpacking Python class RecursiveScriptModule into the underlying ScriptModule.
|
|
mb.import_module(recursivescriptmodule._c)
|
|
mb.module.operation.print()
|