torch-mlir/frontends/pytorch/test/module_import/prim.py

43 lines
1.6 KiB
Python

# -*- Python -*-
# This file is licensed under a pytorch-style license
# See frontends/pytorch/LICENSE for license information.
import typing
import torch
import torch_mlir
# RUN: %PYTHON %s | npcomp-opt | FileCheck %s
mb = torch_mlir.ModuleBuilder()
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.t1 = torch.ones(1)
self.t2 = torch.ones(1)
# CHECK-LABEL: func{{.*}}TestModule.forward{{.*}}(
# CHECK-SAME: %[[SELF:.*]]: !torch.nn.Module<"{{.*}}">) -> !basicpy.NoneType {
def forward(self):
# CHECK: %[[T2:.*]] = torch.prim.GetAttr %[[SELF]]["t2"]
# CHECK: torch.prim.SetAttr %[[SELF]]["t1"] = %[[T2]]
self.t1 = self.t2
# CHECK: torch.prim.CallMethod %[[SELF]]["callee"] (%{{.*}}, %{{.*}})
self.callee(self.t1, self.t2)
# CHECK-LABEL: func{{.*}}TestModule.callee{{.*}}(
# CHECK-SAME: %[[SELF:.*]]: !torch.nn.Module<"{{.*}}">,
# CHECK-SAME: %[[X:.*]]: !numpy.ndarray<*:!numpy.any_dtype>,
# CHECK-SAME: %[[Y:.*]]: !numpy.ndarray<*:!numpy.any_dtype>
def callee(self, x, y):
# CHECK: %[[BYTES:.*]] = basicpy.bytes_constant "x"
# CHECK: torch.prim.Print(%[[BYTES]], %[[X]]) : !basicpy.BytesType, !numpy.ndarray<*:!numpy.any_dtype>
print("x", x)
pass
test_module = TestModule()
recursivescriptmodule = torch.jit.script(test_module)
# TODO: Automatically handle unpacking Python class RecursiveScriptModule into the underlying ScriptModule.
mb.import_module(recursivescriptmodule._c)
mb.module.operation.print()