mirror of https://github.com/llvm/torch-mlir
1.6 KiB
1.6 KiB
Torch-MLIR Lazy Tensor Core Backend Examples
Refer to the main documentation here.
Example Usage
import torch
import torch._lazy
import torch_mlir._mlir_libs._REFERENCE_LAZY_BACKEND as lazy_backend
# Register the example LTC backend.
lazy_backend._initialize()
device = 'lazy'
# Create some tensors and perform operations.
inputs = torch.tensor([[1, 2, 3, 4, 5]], dtype=torch.float32, device=device)
outputs = torch.tanh(inputs)
# Mark end of training/evaluation iteration and lower traced graph.
torch._lazy.mark_step()
print('Results:', outputs)
# Optionally dump MLIR graph generated from LTC trace.
computation = lazy_backend.get_latest_computation()
if computation:
print(computation.debug_string())
Received 1 computation instances at Compile!
Received 1 arguments, and returned 2 results during ExecuteCompile!
Results: tensor([[0.7616, 0.9640, 0.9951, 0.9993, 0.9999]], device='lazy:0')
JIT Graph:
graph(%p0 : Float(1, 5)):
%1 : Float(1, 5) = aten::tanh(%p0)
return (%p0, %1)
MLIR:
func.func @graph(%arg0: !torch.vtensor<[1,5],f32>) -> (!torch.vtensor<[1,5],f32>, !torch.vtensor<[1,5],f32>) {
%0 = torch.aten.tanh %arg0 : !torch.vtensor<[1,5],f32> -> !torch.vtensor<[1,5],f32>
return %arg0, %0 : !torch.vtensor<[1,5],f32>, !torch.vtensor<[1,5],f32>
}
Input/Output Alias Mapping:
Output: 0 -> Input param: 0
In Mark Step: true
Example Models
There are also examples of a HuggingFace BERT and MNIST model running on the example LTC backend.