torch-mlir/README.md

211 lines
7.1 KiB
Markdown

# NPComp - MLIR based compiler toolkit for numerical python programs
> This project is participating in the LLVM Incubator process: as such, it is
not part of any official LLVM release. While incubation status is not
necessarily a reflection of the completeness or stability of the code, it
does indicate that the project is not yet endorsed as a component of LLVM.
The NPComp project aims to provide tooling for compiling numerical python programs of various forms to take advantage of MLIR+LLVM code generation and backend runtime systems.
In addition to providing a bridge to a variety of Python based numerical programming frameworks, NPComp also directly develops components for tracing and compilation of generic Python program fragments.
## Framework integrations
* [PyTorch](frontends/pytorch/README.md) -- Experimental integration for
extracting programs from PyTorch.
## Python language compiler tookit
At the core of NPComp are a set of dialects and python support code for tracing (define by run) numerical programs and compiling idiomatic subsets of the Python language. As another interpretation of the name, NPComp also seeks to provide compiler-backed support for Numpy APIs.
See the [features doc](docs/features.md) for a semi-curated status of what is implemented in this area.
### Architecture
The compiler is separated into:
* [Frontend importer](python/npcomp/compiler/frontend.py): Translates from
various AST levels to corresponding MLIR dialects.
* Frontend compiler: MLIR passes and conversions, mostly operating on the
[basicpy](include/Dialect/Basicpy/IR/BasicpyOps.td) and
[numpy](include/Dialect/Numpy/IR/NumpyOps.td) dialects.
* Backend compiler and runtime: Some effort has been taken to make this
pluggable, but right now, only the [IREE Backend](python/npcomp/compiler/backend/iree.py)
exists. There is in-tree work to also build a minimal reference backend
directly targeting LLVM.
## Repository Layout
The project is roughly split into the following areas of code:
* [User-facing Python code](python/npcomp)
* C++ [include](include) and [lib](lib) trees, following LLVM/MLIR conventions
* LIT testing trees:
* [test](test): Lit/FileCheck tests covering core MLIR based infra
* [test/Python/Compiler](test/Python/Compiler): Lit test suite that drive the compiler
infra from Python
* [backend_test](backend_test): Lit test suites conditionally enabled for
each backend
* [tools](tools): Scripts and binaries (npcomp-opt, npcomp-run-mlir, etc)
## Interactive Use
The cmake configuration populates symlinks in the `build/python` directory
mirroring the source layout. This allows edit-run without rebuilding (unless
if files are added/removed).
Configuring the `PYTHONPATH` as above should be sufficient to run any
interactive tooling (`python3`, Jupyter/Colab, etc).
Note that running the `cmake_configure.sh` script will also output a `.env`
file in the workspace folder with the correct PYTHONPATH set. This allows
tools like VSCode to work by default for debugging.
Notes:
* Python sources are symlinked to the output directory at configure time.
Adding sources will require a reconfigure. Editing should not.
* It is a very common issue to have both python 2.7 (aka. "python") and python
3.x (aka. "python3") on a system at a time (and we can only hope that one
day this ends). Since the native library at development time binds to a
specific version, if you try to run with a different python, you will get
an error about the "native" module not being found.
## Compiler development
For bash users, adding the following to your `.bashrc` defines some aliases
that are useful during compiler development, such as shortcuts for builing
and running `npcomp-opt`.
```
source $WHERE_YOU_CHECKED_OUT_NPCOMP/tools/bash_helpers.sh
```
## Build Instructions
### Common prep
```shell
# From checkout directory.
git submodule init
git submodule update
# Use clang and lld to build (optional but recommended).
LLVM_VERSION=10
export CC=clang-$LLVM_VERSION
export CXX=clang++-$LLVM_VERSION
export LDFLAGS=-fuse-ld=$(which ld.lld-$LLVM_VERSION)
# Build and install LLVM/MLIR into the ./install-mlir directory
./build_tools/install_mlir.sh
```
### Vanilla - numpy-only, no pytorch
```shell
# Follow common prep above.
./build_tools/cmake_configure.sh
# Build and run tests
# ./build_tools/test_all.sh runs all of these commands.
cd build
ninja
ninja check-npcomp
# Setup PYTHONPATH for interactive use
export PYTHONPATH="$(realpath python):$(realpath build/python)"
```
### PyTorch Frontend Build (manual docker instructions)
Create docker image (or follow your own preferences):
* Mount the (host) source directory to `/src/mlir-npcomp` (in the container).
* Mount the `/build` directory (in the container) appropriately for your case.
```shell
docker build docker/pytorch-1.6 --tag local/npcomp:build-pytorch-1.6
docker volume create npcomp-build
```
Shell into docker image:
```shell
docker run \
--mount type=bind,source=$HOME/src/mlir-npcomp,target=/src/mlir-npcomp \
--mount source=npcomp-build,target=/build \
--rm -it local/npcomp:build-pytorch-1.6 /bin/bash
```
Build/test npcomp (from within docker image):
```shell
# From within the docker image.
cd /src/mlir-npcomp
./build_tools/install_mlir.sh
./build_tools/cmake_configure.sh
cmake --build /build/npcomp --target check-npcomp check-frontends-pytorch
```
### VSCode with a Docker Dev Image
#### Start a docker dev container based on our image
Assumes that mlir-npcomp is checked out locally under `~/src/mlir-npcomp`.
See `docker_shell_funcs.sh` for commands to modify if different.
```shell
# Build/start the container.
source ./build_tools/docker_shell_funcs.sh
npcomp_docker_build # Only needed first time/on updates to docker files.
npcomp_docker_start
```
```shell
# Get an interactive shell to the container and initial build.
npcomp_docker_login
```
```shell
# Stop the container (when done).
npcomp_docker_stop
```
### Configure VSCode:
Attach to your running container by opening the Docker extension tab (left panel), right clicking on the container name, and selecting "Attach Visual Studio code".
Install extensions in container:
* CMake Tools
* C/C++
* C++ Intellisense
#### Add workspace folders:
* `mlir-npcomp` source folder
* `external/llvm-project` source folder
#### Configure general settings:
`Ctrl-Shift-P` > `Preferences: Open Settings (UI)`
* For `mlir-npcomp` folder:
* `Cmake: Build directory`: `/build/npcomp`
* Uncheck `Cmake: Configure On Edit` and `Cmake: Configure on Open`
* For `llvm-project` folder:
* `Cmake: Build directory`: `/build/llvm-build`
* Uncheck `Cmake: Configure On Edit` and `Cmake: Configure on Open`
#### Configure Intellisense:
`Ctrl-Shift-P` > `C/C++: Edit Configurations (UI)`
* Open C/C++ config (for each project folder):
* Under Advanced, Compile Commands:
* set `/build/npcomp/compile_commands.json` for mlir-npcomp
* set `/build/llvm-build/compile_commands.json` for llvm-project
* Open a C++ file, give it a few seconds and see if you get code completion
(press CTRL-Space).
Make sure to save your workspace (prefer a local folder with the "Use Local" button)!