torch-mlir/e2e_testing/torchscript/elementwise.py

397 lines
10 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import torch
from torch_mlir_e2e_test.torchscript.framework import TestUtils
from torch_mlir_e2e_test.torchscript.registry import register_test_case
from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
# TODO: Support scalar !torch.int/!torch.float variants. Add support to
# ReduceOpVariants to implement them in terms of the tensor-only variants +
# torch.prim.NumToTensor.
# TODO: This is pretty verbose. Can we have a helper to reduce
# the boilerplate?
# ==============================================================================
class ElementwiseUnaryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.tanh(a)
@register_test_case(module_factory=lambda: ElementwiseUnaryModule())
def ElementwiseUnaryModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseBinaryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
([-1], torch.float32, True),
])
def forward(self, a, b):
return a * b
@register_test_case(module_factory=lambda: ElementwiseBinaryModule())
def ElementwiseBinaryModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4), tu.rand(4))
# ==============================================================================
class ElementwiseTernaryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
([-1, -1], torch.float32, True),
([-1], torch.float32, True),
])
def forward(self, a, b, c):
return torch.lerp(a, b, c)
@register_test_case(module_factory=lambda: ElementwiseTernaryModule())
def ElementwiseTernaryModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5), tu.rand(4, 5), tu.rand(5))
# ==============================================================================
# Addition is an interesting special case of a binary op, because under the hood
# it carries a third scalar "alpha" parameter, which needs special handling.
class ElementwiseAddModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.float32, True),
([], torch.float32, True),
])
def forward(self, a, b):
return a + b
@register_test_case(module_factory=lambda: ElementwiseAddModule())
def ElementwiseAddModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4), tu.rand())
# ==============================================================================
class ElementwiseUnsqueezeBroadcastModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.float32, True),
([], torch.float32, True),
])
def forward(self, a, b):
return a * b.unsqueeze(0)
@register_test_case(
module_factory=lambda: ElementwiseUnsqueezeBroadcastModule())
def ElementwiseUnsqueezeBroadcastModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4), tu.rand())
# ==============================================================================
class ElementwiseUnsqueezeNegDimsModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
# As mentioned in `unsqueeze` docstring,
# valid dim values are [-input.dim()-1, input.dim()+1).
# This tests the lower bound
return torch.unsqueeze(a, -3)
@register_test_case(
module_factory=lambda: ElementwiseUnsqueezeNegDimsModule())
def ElementwiseUnsqueezeNegDimsModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4, 3))
# ==============================================================================
class ElementwiseFlattenBroadcastModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.float32, True),
([], torch.float32, True),
])
def forward(self, a, b):
return a * b.flatten(-1, -1)
@register_test_case(module_factory=lambda: ElementwiseFlattenBroadcastModule())
def ElementwiseFlattenBroadcastModule_basic(module, tu: TestUtils):
module.forward(tu.rand(6), tu.rand())
# ==============================================================================
class ElementwiseReluModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, x):
return torch.relu(x)
@register_test_case(module_factory=lambda: ElementwiseReluModule())
def ElementwiseReluModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4, 2) - 0.5)
# ==============================================================================
class ElementwiseGeluModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.gelu = torch.nn.GELU()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, x):
return self.gelu(x)
@register_test_case(module_factory=lambda: ElementwiseGeluModule())
def ElementwiseGeluModule_basic(module, tu: TestUtils):
module.forward(2*tu.rand(5, 3) - 0.5)
# ==============================================================================
class ElementwiseSigmoidModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, x):
return torch.sigmoid(x)
@register_test_case(module_factory=lambda: ElementwiseSigmoidModule())
def ElementwiseSigmoidModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 5))
# ==============================================================================
class ElementwiseMinimumModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
([-1, -1], torch.float32, True),
])
def forward(self, x, y):
return torch.minimum(x, y)
@register_test_case(module_factory=lambda: ElementwiseMinimumModule())
def ElementwiseMinimumModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 5), tu.rand(3, 5))
module.forward(tu.nans(3, 5), tu.rand(3, 5))
# ==============================================================================
class ElementwiseMaximumModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
([-1, -1], torch.float32, True),
])
def forward(self, x, y):
return torch.maximum(x, y)
@register_test_case(module_factory=lambda: ElementwiseMaximumModule())
def ElementwiseMaximumModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 5), tu.rand(3, 5))
module.forward(tu.nans(3, 5), tu.rand(3, 5))
# ==============================================================================
class ElementwiseClampModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, x):
# TODO: It would be great to return all of these, so they get checked
# individually, but RefBackend doesn't support multiple returns.
# Instead, multiply them together, which has some chance of propagating
# all the values.
float_min = torch.clamp(x, min=-2.0)
int_min = torch.clamp(x, min=-3)
float_max = torch.clamp(x, max=2.0)
int_max = torch.clamp(x, max=3)
both = torch.clamp(x, min=-5, max=5)
return float_min * int_min * float_max * int_max * both
@register_test_case(module_factory=lambda: ElementwiseClampModule())
def ElementwiseClampModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 5, low=-10, high=10))
class RsubModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, x):
return torch.rsub(x, 3.0, alpha=1.0)
@register_test_case(module_factory=lambda: RsubModule())
def RsubModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
class RsubModule_noalpha(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, x):
return torch.rsub(x, 2.0)
@register_test_case(module_factory=lambda: RsubModule_noalpha())
def RsubModule_noalpha_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
class ElementwiseLogModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.log(a)
@register_test_case(module_factory=lambda: ElementwiseLogModule())
def ElementwiseLogModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
class ElementwiseSqrtModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.sqrt(a)
@register_test_case(module_factory=lambda: ElementwiseSqrtModule())
def ElementwiseSqrtModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
class ElementwiseFloorModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.floor(a)
@register_test_case(module_factory=lambda: ElementwiseFloorModule())
def ElementwiseFloorModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))