commit
3f48c6b10a
|
@ -20,13 +20,13 @@ Kubernetes设计理念和功能其实就是一个类似Linux的分层架构,
|
|||
|
||||
### API设计原则
|
||||
|
||||
对于云计算系统,系统API实际上处于系统设计的统领地位,正如本文前面所说,kubernetes集群系统每支持一项新功能,引入一项新技术,一定会新引入对应的API对象,支持对该功能的管理操作,理解掌握的API,就好比抓住了kubernetes系统的牛鼻子。Kubernetes系统API的设计有以下几条原则:
|
||||
对于云计算系统,系统API实际上处于系统设计的统领地位,正如本文前面所说,Kubernetes集群系统每支持一项新功能,引入一项新技术,一定会新引入对应的API对象,支持对该功能的管理操作,理解掌握的API,就好比抓住了Kubernetes系统的牛鼻子。Kubernetes系统API的设计有以下几条原则:
|
||||
|
||||
1. **所有API应该是声明式的**。正如前文所说,声明式的操作,相对于命令式操作,对于重复操作的效果是稳定的,这对于容易出现数据丢失或重复的分布式环境来说是很重要的。另外,声明式操作更容易被用户使用,可以使系统向用户隐藏实现的细节,隐藏实现的细节的同时,也就保留了系统未来持续优化的可能性。此外,声明式的API,同时隐含了所有的API对象都是名词性质的,例如Service、Volume这些API都是名词,这些名词描述了用户所期望得到的一个目标分布式对象。
|
||||
2. **API对象是彼此互补而且可组合的**。这里面实际是鼓励API对象尽量实现面向对象设计时的要求,即“高内聚,松耦合”,对业务相关的概念有一个合适的分解,提高分解出来的对象的可重用性。事实上,Kubernetes这种分布式系统管理平台,也是一种业务系统,只不过它的业务就是调度和管理容器服务。
|
||||
3. **高层API以操作意图为基础设计**。如何能够设计好API,跟如何能用面向对象的方法设计好应用系统有相通的地方,高层设计一定是从业务出发,而不是过早的从技术实现出发。因此,针对Kubernetes的高层API设计,一定是以Kubernetes的业务为基础出发,也就是以系统调度管理容器的操作意图为基础设计。
|
||||
4. **低层API根据高层API的控制需要设计**。设计实现低层API的目的,是为了被高层API使用,考虑减少冗余、提高重用性的目的,低层API的设计也要以需求为基础,要尽量抵抗受技术实现影响的诱惑。
|
||||
5. **尽量避免简单封装,不要有在外部API无法显式知道的内部隐藏的机制**。简单的封装,实际没有提供新的功能,反而增加了对所封装API的依赖性。内部隐藏的机制也是非常不利于系统维护的设计方式,例如PetSet和ReplicaSet,本来就是两种Pod集合,那么Kubernetes就用不同API对象来定义它们,而不会说只用同一个ReplicaSet,内部通过特殊的算法再来区分这个ReplicaSet是有状态的还是无状态。
|
||||
5. **尽量避免简单封装,不要有在外部API无法显式知道的内部隐藏的机制**。简单的封装,实际没有提供新的功能,反而增加了对所封装API的依赖性。内部隐藏的机制也是非常不利于系统维护的设计方式,例如StatefulSet和ReplicaSet,本来就是两种Pod集合,那么Kubernetes就用不同API对象来定义它们,而不会说只用同一个ReplicaSet,内部通过特殊的算法再来区分这个ReplicaSet是有状态的还是无状态。
|
||||
6. **API操作复杂度与对象数量成正比**。这一条主要是从系统性能角度考虑,要保证整个系统随着系统规模的扩大,性能不会迅速变慢到无法使用,那么最低的限定就是API的操作复杂度不能超过O\(N\),N是对象的数量,否则系统就不具备水平伸缩性了。
|
||||
7. **API对象状态不能依赖于网络连接状态**。由于众所周知,在分布式环境下,网络连接断开是经常发生的事情,因此要保证API对象状态能应对网络的不稳定,API对象的状态就不能依赖于网络连接状态。
|
||||
8. **尽量避免让操作机制依赖于全局状态,因为在分布式系统中要保证全局状态的同步是非常困难的**。
|
||||
|
@ -52,7 +52,7 @@ Kubernetes中所有的配置都是通过API对象的spec去设置的,也就是
|
|||
|
||||
Kubernetes有很多技术概念,同时对应很多API对象,最重要的也是最基础的是Pod。Pod是在Kubernetes集群中运行部署应用或服务的最小单元,它是可以支持多容器的。Pod的设计理念是支持多个容器在一个Pod中共享网络地址和文件系统,可以通过进程间通信和文件共享这种简单高效的方式组合完成服务。Pod对多容器的支持是K8最基础的设计理念。比如你运行一个操作系统发行版的软件仓库,一个Nginx容器用来发布软件,另一个容器专门用来从源仓库做同步,这两个容器的镜像不太可能是一个团队开发的,但是他们一块儿工作才能提供一个微服务;这种情况下,不同的团队各自开发构建自己的容器镜像,在部署的时候组合成一个微服务对外提供服务。
|
||||
|
||||
Pod是Kubernetes集群中所有业务类型的基础,可以看作运行在K8集群中的小机器人,不同类型的业务就需要不同类型的小机器人去执行。目前Kubernetes中的业务主要可以分为长期伺服型(long-running)、批处理型(batch)、节点后台支撑型(node-daemon)和有状态应用型(stateful application);分别对应的小机器人控制器为Deployment、Job、DaemonSet和PetSet,本文后面会一一介绍。
|
||||
Pod是Kubernetes集群中所有业务类型的基础,可以看作运行在K8集群中的小机器人,不同类型的业务就需要不同类型的小机器人去执行。目前Kubernetes中的业务主要可以分为长期伺服型(long-running)、批处理型(batch)、节点后台支撑型(node-daemon)和有状态应用型(stateful application);分别对应的小机器人控制器为Deployment、Job、DaemonSet和StatefulSet,本文后面会一一介绍。
|
||||
|
||||
### 副本控制器(Replication Controller,RC)
|
||||
|
||||
|
@ -78,13 +78,13 @@ Job是Kubernetes用来控制批处理型任务的API对象。批处理业务与
|
|||
|
||||
长期伺服型和批处理型服务的核心在业务应用,可能有些节点运行多个同类业务的Pod,有些节点上又没有这类Pod运行;而后台支撑型服务的核心关注点在Kubernetes集群中的节点(物理机或虚拟机),要保证每个节点上都有一个此类Pod运行。节点可能是所有集群节点也可能是通过nodeSelector选定的一些特定节点。典型的后台支撑型服务包括,存储,日志和监控等在每个节点上支持Kubernetes集群运行的服务。
|
||||
|
||||
### 有状态服务集(PetSet)
|
||||
### 有状态服务集(StatefulSet)
|
||||
|
||||
Kubernetes在1.3版本里发布了Alpha版的PetSet功能。在云原生应用的体系里,有下面两组近义词;第一组是无状态(stateless)、牲畜(cattle)、无名(nameless)、可丢弃(disposable);第二组是有状态(stateful)、宠物(pet)、有名(having name)、不可丢弃(non-disposable)。RC和RS主要是控制提供无状态服务的,其所控制的Pod的名字是随机设置的,一个Pod出故障了就被丢弃掉,在另一个地方重启一个新的Pod,名字变了、名字和启动在哪儿都不重要,重要的只是Pod总数;而PetSet是用来控制有状态服务,PetSet中的每个Pod的名字都是事先确定的,不能更改。PetSet中Pod的名字的作用,并不是《千与千寻》的人性原因,而是关联与该Pod对应的状态。
|
||||
Kubernetes在1.3版本里发布了Alpha版的PetSet功能,在1.5版本里将PetSet功能升级到了Beta版本,并重新命名为StatefulSet,最终在1.9版本里成为正式GA版本。在云原生应用的体系里,有下面两组近义词;第一组是无状态(stateless)、牲畜(cattle)、无名(nameless)、可丢弃(disposable);第二组是有状态(stateful)、宠物(pet)、有名(having name)、不可丢弃(non-disposable)。RC和RS主要是控制提供无状态服务的,其所控制的Pod的名字是随机设置的,一个Pod出故障了就被丢弃掉,在另一个地方重启一个新的Pod,名字变了、名字和启动在哪儿都不重要,重要的只是Pod总数;而StatefulSet是用来控制有状态服务,StatefulSet中的每个Pod的名字都是事先确定的,不能更改。StatefulSet中Pod的名字的作用,并不是《千与千寻》的人性原因,而是关联与该Pod对应的状态。
|
||||
|
||||
对于RC和RS中的Pod,一般不挂载存储或者挂载共享存储,保存的是所有Pod共享的状态,Pod像牲畜一样没有分别(这似乎也确实意味着失去了人性特征);对于PetSet中的Pod,每个Pod挂载自己独立的存储,如果一个Pod出现故障,从其他节点启动一个同样名字的Pod,要挂载上原来Pod的存储继续以它的状态提供服务。
|
||||
对于RC和RS中的Pod,一般不挂载存储或者挂载共享存储,保存的是所有Pod共享的状态,Pod像牲畜一样没有分别(这似乎也确实意味着失去了人性特征);对于StatefulSet中的Pod,每个Pod挂载自己独立的存储,如果一个Pod出现故障,从其他节点启动一个同样名字的Pod,要挂载上原来Pod的存储继续以它的状态提供服务。
|
||||
|
||||
适合于PetSet的业务包括数据库服务MySQL和PostgreSQL,集群化管理服务Zookeeper、etcd等有状态服务。PetSet的另一种典型应用场景是作为一种比普通容器更稳定可靠的模拟虚拟机的机制。传统的虚拟机正是一种有状态的宠物,运维人员需要不断地维护它,容器刚开始流行时,我们用容器来模拟虚拟机使用,所有状态都保存在容器里,而这已被证明是非常不安全、不可靠的。使用PetSet,Pod仍然可以通过漂移到不同节点提供高可用,而存储也可以通过外挂的存储来提供高可靠性,PetSet做的只是将确定的Pod与确定的存储关联起来保证状态的连续性。PetSet还只在Alpha阶段,后面的设计如何演变,我们还要继续观察。
|
||||
适合于StatefulSet的业务包括数据库服务MySQL和PostgreSQL,集群化管理服务ZooKeeper、etcd等有状态服务。StatefulSet的另一种典型应用场景是作为一种比普通容器更稳定可靠的模拟虚拟机的机制。传统的虚拟机正是一种有状态的宠物,运维人员需要不断地维护它,容器刚开始流行时,我们用容器来模拟虚拟机使用,所有状态都保存在容器里,而这已被证明是非常不安全、不可靠的。使用StatefulSet,Pod仍然可以通过漂移到不同节点提供高可用,而存储也可以通过外挂的存储来提供高可靠性,StatefulSet做的只是将确定的Pod与确定的存储关联起来保证状态的连续性。
|
||||
|
||||
### 集群联邦(Federation)
|
||||
|
||||
|
@ -92,11 +92,13 @@ Kubernetes在1.3版本里发布了beta版的Federation功能。在云计算环
|
|||
|
||||
每个Kubernetes Federation有自己的分布式存储、API Server和Controller Manager。用户可以通过Federation的API Server注册该Federation的成员Kubernetes Cluster。当用户通过Federation的API Server创建、更改API对象时,Federation API Server会在自己所有注册的子Kubernetes Cluster都创建一份对应的API对象。在提供业务请求服务时,Kubernetes Federation会先在自己的各个子Cluster之间做负载均衡,而对于发送到某个具体Kubernetes Cluster的业务请求,会依照这个Kubernetes Cluster独立提供服务时一样的调度模式去做Kubernetes Cluster内部的负载均衡。而Cluster之间的负载均衡是通过域名服务的负载均衡来实现的。
|
||||
|
||||
所有的设计都尽量不影响Kubernetes Cluster现有的工作机制,这样对于每个子Kubernetes集群来说,并不需要更外层的有一个Kubernetes Federation,也就是意味着所有现有的Kubernetes代码和机制不需要因为Federation功能有任何变化。
|
||||
Federation V1的设计是尽量不影响Kubernetes Cluster现有的工作机制,这样对于每个子Kubernetes集群来说,并不需要更外层的有一个Kubernetes Federation,也就是意味着所有现有的Kubernetes代码和机制不需要因为Federation功能有任何变化。
|
||||
|
||||
目前正在开发的Federation V2,在保留现有Kubernetes API的同时,会开发新的Federation专用的API接口,详细内容可以在[这里](https://github.com/kubernetes/community/tree/master/sig-multicluster)找到。
|
||||
|
||||
### 存储卷(Volume)
|
||||
|
||||
Kubernetes集群中的存储卷跟Docker的存储卷有些类似,只不过Docker的存储卷作用范围为一个容器,而Kubernetes的存储卷的生命周期和作用范围是一个Pod。每个Pod中声明的存储卷由Pod中的所有容器共享。Kubernetes支持非常多的存储卷类型,特别的,支持多种公有云平台的存储,包括AWS,Google和Azure云;支持多种分布式存储包括GlusterFS和Ceph;也支持较容易使用的主机本地目录hostPath和NFS。Kubernetes还支持使用Persistent Volume Claim即PVC这种逻辑存储,使用这种存储,使得存储的使用者可以忽略后台的实际存储技术(例如AWS,Google或GlusterFS和Ceph),而将有关存储实际技术的配置交给存储管理员通过Persistent Volume来配置。
|
||||
Kubernetes集群中的存储卷跟Docker的存储卷有些类似,只不过Docker的存储卷作用范围为一个容器,而Kubernetes的存储卷的生命周期和作用范围是一个Pod。每个Pod中声明的存储卷由Pod中的所有容器共享。Kubernetes支持非常多的存储卷类型,特别的,支持多种公有云平台的存储,包括AWS,Google和Azure云;支持多种分布式存储包括GlusterFS和Ceph;也支持较容易使用的主机本地目录emptyDir, hostPath和NFS。Kubernetes还支持使用Persistent Volume Claim即PVC这种逻辑存储,使用这种存储,使得存储的使用者可以忽略后台的实际存储技术(例如AWS,Google或GlusterFS和Ceph),而将有关存储实际技术的配置交给存储管理员通过Persistent Volume来配置。
|
||||
|
||||
### 持久存储卷(Persistent Volume,PV)和持久存储卷声明(Persistent Volume Claim,PVC)
|
||||
|
||||
|
|
|
@ -46,7 +46,7 @@ Kubernetes主要由以下几个核心组件组成:
|
|||
|
||||
### 整体架构
|
||||
|
||||
下图清晰表明了kubernetes的架构设计以及组件之间的通信协议。
|
||||
下图清晰表明了Kubernetes的架构设计以及组件之间的通信协议。
|
||||
|
||||
![Kuberentes架构(图片来自于网络)](../images/kubernetes-high-level-component-archtecture.jpg)
|
||||
|
||||
|
@ -76,7 +76,7 @@ Kubernetes设计理念和功能其实就是一个类似Linux的分层架构,
|
|||
* Kubernetes外部:日志、监控、配置管理、CI、CD、Workflow、FaaS、OTS应用、ChatOps等
|
||||
* Kubernetes内部:CRI、CNI、CVI、镜像仓库、Cloud Provider、集群自身的配置和管理等
|
||||
|
||||
> 关于分层架构,可以关注下Kubernetes社区正在推进的[Kbernetes architectual roadmap](https://docs.google.com/document/d/1XkjVm4bOeiVkj-Xt1LgoGiqWsBfNozJ51dyI-ljzt1o)和[slide](https://docs.google.com/presentation/d/1GpELyzXOGEPY0Y1ft26yMNV19ROKt8eMN67vDSSHglk/edit)。
|
||||
> 关于分层架构,可以关注下Kubernetes社区正在推进的[Kubernetes architectual roadmap](https://docs.google.com/document/d/1XkjVm4bOeiVkj-Xt1LgoGiqWsBfNozJ51dyI-ljzt1o)和[slide](https://docs.google.com/presentation/d/1GpELyzXOGEPY0Y1ft26yMNV19ROKt8eMN67vDSSHglk/edit)。
|
||||
|
||||
## 参考文档
|
||||
|
||||
|
@ -84,5 +84,5 @@ Kubernetes设计理念和功能其实就是一个类似Linux的分层架构,
|
|||
- <http://queue.acm.org/detail.cfm?id=2898444>
|
||||
- <http://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/43438.pdf>
|
||||
- <http://thenewstack.io/kubernetes-an-overview>
|
||||
- [Kbernetes architectual roadmap](https://docs.google.com/document/d/1XkjVm4bOeiVkj-Xt1LgoGiqWsBfNozJ51dyI-ljzt1o)和[slide](https://docs.google.com/presentation/d/1GpELyzXOGEPY0Y1ft26yMNV19ROKt8eMN67vDSSHglk/edit)
|
||||
- [Kubernetes architectual roadmap](https://docs.google.com/document/d/1XkjVm4bOeiVkj-Xt1LgoGiqWsBfNozJ51dyI-ljzt1o)和[slide](https://docs.google.com/presentation/d/1GpELyzXOGEPY0Y1ft26yMNV19ROKt8eMN67vDSSHglk/edit)
|
||||
|
||||
|
|
Loading…
Reference in New Issue