运行支持kubernetes原生调度的Spark程序

我们之前就在 kubernetes 中运行过 standalone 方式的 spark 集群,见 Spark standalone on kubernetes

目前运行支持 kubernetes 原生调度的 spark 程序由 Google 主导,

Spark 概念说明

Apache Spark 是一个围绕速度、易用性和复杂分析构建的大数据处理框架。最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一。

在 Spark 中包括如下组件或概念:

  • Application:Spark Application 的概念和 Hadoop 中的 MapReduce 类似,指的是用户编写的 Spark 应用程序,包含了一个 Driver 功能的代码和分布在集群中多个节点上运行的 Executor 代码;
  • Driver:Spark 中的 Driver 即运行上述 Application 的 main() 函数并且创建 SparkContext,其中创建 SparkContext 的目的是为了准备Spark应用程序的运行环境。在 Spark 中由 SparkContext 负责和 ClusterManager 通信,进行资源的申请、任务的分配和监控等;当 Executor 部分运行完毕后,Driver负责将SparkContext 关闭。通常用 SparkContext 代表 Driver;
  • Executor:Application运行在Worker 节点上的一个进程,该进程负责运行Task,并且负责将数据存在内存或者磁盘上,每个Application都有各自独立的一批Executor。在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutorBackend,类似于 Hadoop MapReduce 中的 YarnChild。一个 CoarseGrainedExecutorBackend 进程有且仅有一个 executor 对象,它负责将 Task 包装成 taskRunner,并从线程池中抽取出一个空闲线程运行 Task。每个 CoarseGrainedExecutorBackend 能并行运行 Task 的数量就取决于分配给它的 CPU 的个数了;
  • Cluster Manager:指的是在集群上获取资源的外部服务,目前有:
    • Standalone:Spark原生的资源管理,由Master负责资源的分配;
    • Hadoop Yarn:由YARN中的ResourceManager负责资源的分配;
  • Worker:集群中任何可以运行Application代码的节点,类似于YARN中的NodeManager节点。在Standalone模式中指的就是通过Slave文件配置的Worker节点,在Spark on Yarn模式中指的就是NodeManager节点;
  • 作业(Job):包含多个Task组成的并行计算,往往由Spark Action催生,一个JOB包含多个RDD及作用于相应RDD上的各种Operation;
  • 阶段(Stage):每个Job会被拆分很多组 Task,每组任务被称为Stage,也可称TaskSet,一个作业分为多个阶段,每一个stage的分割点是action。比如一个job是:(transformation1 -> transformation1 -> action1 -> transformation3 -> action2),这个job就会被分为两个stage,分割点是action1和action2。
  • 任务(Task): 被送到某个Executor上的工作任务;

  • Context:启动spark application的时候创建,作为Spark 运行时环境。

  • Dynamic Allocation(动态资源分配):一个配置选项,可以将其打开。从Spark1.2之后,对于On Yarn模式,已经支持动态资源分配(Dynamic Resource Allocation),这样,就可以根据Application的负载(Task情况),动态的增加和减少executors,这种策略非常适合在YARN上使用spark-sql做数据开发和分析,以及将spark-sql作为长服务来使用的场景。Executor 的动态分配需要在 cluster mode 下启用 "external shuffle service"。
  • 动态资源分配策略:开启动态分配策略后,application会在task因没有足够资源被挂起的时候去动态申请资源,这意味着该application现有的executor无法满足所有task并行运行。spark一轮一轮的申请资源,当有task挂起或等待 spark.dynamicAllocation.schedulerBacklogTimeout (默认1s)时间的时候,会开始动态资源分配;之后会每隔 spark.dynamicAllocation.sustainedSchedulerBacklogTimeout (默认1s)时间申请一次,直到申请到足够的资源。每次申请的资源量是指数增长的,即1,2,4,8等。之所以采用指数增长,出于两方面考虑:其一,开始申请的少是考虑到可能application会马上得到满足;其次要成倍增加,是为了防止application需要很多资源,而该方式可以在很少次数的申请之后得到满足。

架构设计

关于 spark standalone 的局限性与 kubernetes native spark 架构之间的区别请参考 Anirudh Ramanathan 在 2016年10月8日提交的 issue Support Spark natively in Kubernetes #34377

简而言之,spark standalone on kubernetes 有如下几个缺点:

  • 无法对于多租户做隔离,每个用户都想给 pod 申请 node 节点可用的最大的资源。
  • Spark 的 master/worker 本来不是设计成使用 kubernetes 的资源调度,这样会存在两层的资源调度问题,不利于与 kuberentes 集成。

而 kubernetes native spark 集群中,spark 可以调用 kubernetes API 获取集群资源和调度。要实现 kubernetes native spark 需要为 spark 提供一个集群外部的 manager 可以用来跟 kubernetes API 交互。

安装指南

我们可以直接使用官方已编译好的 docker 镜像来部署。

组件 镜像
Spark Driver Image kubespark/spark-driver:v2.1.0-kubernetes-0.3.1
Spark Executor Image kubespark/spark-executor:v2.1.0-kubernetes-0.3.1
Spark Initialization Image kubespark/spark-init:v2.1.0-kubernetes-0.3.1
Spark Staging Server Image kubespark/spark-resource-staging-server:v2.1.0-kubernetes-0.3.1
PySpark Driver Image kubespark/driver-py:v2.1.0-kubernetes-0.3.1
PySpark Executor Image kubespark/executor-py:v2.1.0-kubernetes-0.3.1

我将这些镜像放到了我的私有镜像仓库中了。

还需要安装支持 kubernetes 的 spark 客户端,在这里下载:https://github.com/apache-spark-on-k8s/spark/releases

根据使用的镜像版本,我下载的是 v2.1.0-kubernetes-0.3.1

运行 SparkPi 测试

./bin/spark-submit \
  --deploy-mode cluster \
  --class org.apache.spark.examples.SparkPi \
  --master k8s://https://172.20.0.113:6443 \
  --kubernetes-namespace spark-cluster \
  --conf spark.executor.instances=5 \
  --conf spark.app.name=spark-pi \
  --conf spark.kubernetes.driver.docker.image=sz-pg-oam-docker-hub-001.tendcloud.com/library/kubespark-spark-driver:v2.1.0-kubernetes-0.3.1 \
  --conf spark.kubernetes.executor.docker.image=sz-pg-oam-docker-hub-001.tendcloud.com/library/kubespark-spark-executor:v2.1.0-kubernetes-0.3.1 \
  --conf spark.kubernetes.initcontainer.docker.image=sz-pg-oam-docker-hub-001.tendcloud.com/library/kubespark-spark-init:v2.1.0-kubernetes-0.3.1 \
local:///opt/spark/examples/jars/spark-examples_2.11-2.1.0-k8s-0.3.1-SNAPSHOT.jar

关于该命令参数的介绍请参考:https://apache-spark-on-k8s.github.io/userdocs/running-on-kubernetes.html

注意: 该 jar 包实际上是 spark.kubernetes.executor.docker.image 镜像中的。

这时候提交任务运行还是失败,报错信息中可以看到两个问题:

  • Executor 无法找到 driver pod
  • 用户 system:serviceaccount:spark-cluster:defaul 没有权限获取 spark-cluster 中的 pod 信息。

提了个 issue Failed to run the sample spark-pi test using spark-submit on the doc #478

需要为 spark 集群创建一个 serviceaccountclusterrolebinding

kubectl create serviceaccount spark --namespace spark-cluster
kubectl create rolebinding spark-edit --clusterrole=edit --serviceaccount=spark-cluster:spark --namespace=spark-cluster

该 Bug 将在新版本中修复。

开发文档

Fork 并克隆项目到本地:

git clone https://github.com/rootsongjc/spark.git

编译前请确保你的环境中已经安装 Java8 和 Maven3。

## 第一次编译前需要安装依赖
build/mvn install -Pkubernetes -pl resource-managers/kubernetes/core -am -DskipTests

## 编译 spark on kubernetes
build/mvn compile -Pkubernetes -pl resource-managers/kubernetes/core -am -DskipTests

## 发布
dev/make-distribution.sh --tgz -Phadoop-2.7 -Pkubernetes

第一次编译和发布的过程耗时可能会比较长,请耐心等待,如果有依赖下载不下来,请自备梯子。

详细的开发指南请见:https://github.com/apache-spark-on-k8s/spark/blob/branch-2.2-kubernetes/resource-managers/kubernetes/README.md

参考

Spark动态资源分配-Dynamic Resource Allocation

Running Spark on Kubernetes

Apache Spark Jira Issue - 18278 - SPIP: Support native submission of spark jobs to a kubernetes cluster

Kubernetes Github Issue - 34377 Support Spark natively in Kubernetes

Kubernetes example spark

https://github.com/rootsongjc/spark-on-kubernetes

for GitBook           update 2017-09-09 22:40:08

results matching ""

    No results matching ""