239 lines
9.7 KiB
Markdown
239 lines
9.7 KiB
Markdown
# 集群及应用监控
|
||
|
||
在前面的[安装heapster插件](heapster-addon-installation.md)章节,我们已经谈到Kubernetes本身提供了监控插件作为集群和容器监控的选择,但是在实际使用中,因为种种原因,再考虑到跟我们自身的监控系统集成,我们准备重新造轮子。
|
||
|
||
针对kubernetes集群和应用的监控,相较于传统的虚拟机和物理机的监控有很多不同,因此对于传统监控需要有很多改造的地方,需要关注以下三个方面:
|
||
|
||
- Kubernetes集群本身的监控,主要是kubernetes的各个组件
|
||
- kubernetes集群中Pod的监控,Pod的CPU、内存、网络、磁盘等监控
|
||
- 集群内部应用的监控,针对应用本身的监控
|
||
|
||
## Kubernetes集群中的监控
|
||
|
||
![Kubernetes集群中的监控](../images/monitoring-in-kubernetes.png)
|
||
|
||
跟物理机器和虚拟机的监控不同,在kubernetes集群中的监控复杂度更高一些,因为多了一个虚拟化层,当然这个跟直接监控docker容器又不一样,kubernetes在docker之上又抽象了一层service的概念。
|
||
|
||
在kubernetes中的监控需要考虑到这几个方面:
|
||
|
||
- 应该给Pod打上哪些label,这些label将成为监控的metrics。
|
||
- 当应用的Pod漂移了之后怎么办?因为要考虑到Pod的生命周期比虚拟机和物理机短的多,如何持续监控应用的状态?
|
||
- 更多的监控项,kubernetes本身、容器、应用等。
|
||
- 监控指标的来源,是通过heapster收集后汇聚还是直接从每台主机的docker上取?
|
||
|
||
## 容器的命名规则
|
||
|
||
首先我们需要清楚使用cAdvisor收集的数据的格式和字段信息。
|
||
|
||
当我们通过cAdvisor获取到了容器的信息后,例如访问`${NODE_IP}:4194/api/v1.3/docker`获取的json结果中的某个容器包含如下字段:
|
||
|
||
```json
|
||
"labels": {
|
||
"annotation.io.kubernetes.container.hash": "f47f0602",
|
||
"annotation.io.kubernetes.container.ports": "[{\"containerPort\":80,\"protocol\":\"TCP\"}]",
|
||
"annotation.io.kubernetes.container.restartCount": "0",
|
||
"annotation.io.kubernetes.container.terminationMessagePath": "/dev/termination-log",
|
||
"annotation.io.kubernetes.container.terminationMessagePolicy": "File",
|
||
"annotation.io.kubernetes.pod.terminationGracePeriod": "30",
|
||
"io.kubernetes.container.logpath": "/var/log/pods/d8a2e995-3617-11e7-a4b0-ecf4bbe5d414/php-redis_0.log",
|
||
"io.kubernetes.container.name": "php-redis",
|
||
"io.kubernetes.docker.type": "container",
|
||
"io.kubernetes.pod.name": "frontend-2337258262-771lz",
|
||
"io.kubernetes.pod.namespace": "default",
|
||
"io.kubernetes.pod.uid": "d8a2e995-3617-11e7-a4b0-ecf4bbe5d414",
|
||
"io.kubernetes.sandbox.id": "843a0f018c0cef2a5451434713ea3f409f0debc2101d2264227e814ca0745677"
|
||
},
|
||
```
|
||
|
||
这些信息其实都是kubernetes创建容器时给docker container打的`Labels`,使用`docker inspect $conainer_name`命令同样可以看到上述信息。
|
||
|
||
你是否想过这些label跟容器的名字有什么关系?当你在node节点上执行`docker ps`看到的容器名字又对应哪个应用的Pod呢?
|
||
|
||
在kubernetes代码中pkg/kubelet/dockertools/docker.go中的BuildDockerName方法定义了容器的名称规范。
|
||
|
||
这段容器名称定义代码如下:
|
||
|
||
```go
|
||
// Creates a name which can be reversed to identify both full pod name and container name.
|
||
// This function returns stable name, unique name and a unique id.
|
||
// Although rand.Uint32() is not really unique, but it's enough for us because error will
|
||
// only occur when instances of the same container in the same pod have the same UID. The
|
||
// chance is really slim.
|
||
func BuildDockerName(dockerName KubeletContainerName, container *v1.Container) (string, string, string) {
|
||
containerName := dockerName.ContainerName + "." + strconv.FormatUint(kubecontainer.HashContainerLegacy(container), 16)
|
||
stableName := fmt.Sprintf("%s_%s_%s_%s",
|
||
containerNamePrefix,
|
||
containerName,
|
||
dockerName.PodFullName,
|
||
dockerName.PodUID)
|
||
UID := fmt.Sprintf("%08x", rand.Uint32())
|
||
return stableName, fmt.Sprintf("%s_%s", stableName, UID), UID
|
||
}
|
||
|
||
// Unpacks a container name, returning the pod full name and container name we would have used to
|
||
// construct the docker name. If we are unable to parse the name, an error is returned.
|
||
func ParseDockerName(name string) (dockerName *KubeletContainerName, hash uint64, err error) {
|
||
// For some reason docker appears to be appending '/' to names.
|
||
// If it's there, strip it.
|
||
name = strings.TrimPrefix(name, "/")
|
||
parts := strings.Split(name, "_")
|
||
if len(parts) == 0 || parts[0] != containerNamePrefix {
|
||
err = fmt.Errorf("failed to parse Docker container name %q into parts", name)
|
||
return nil, 0, err
|
||
}
|
||
if len(parts) < 6 {
|
||
// We have at least 5 fields. We may have more in the future.
|
||
// Anything with less fields than this is not something we can
|
||
// manage.
|
||
glog.Warningf("found a container with the %q prefix, but too few fields (%d): %q", containerNamePrefix, len(parts), name)
|
||
err = fmt.Errorf("Docker container name %q has less parts than expected %v", name, parts)
|
||
return nil, 0, err
|
||
}
|
||
|
||
nameParts := strings.Split(parts[1], ".")
|
||
containerName := nameParts[0]
|
||
if len(nameParts) > 1 {
|
||
hash, err = strconv.ParseUint(nameParts[1], 16, 32)
|
||
if err != nil {
|
||
glog.Warningf("invalid container hash %q in container %q", nameParts[1], name)
|
||
}
|
||
}
|
||
|
||
podFullName := parts[2] + "_" + parts[3]
|
||
podUID := types.UID(parts[4])
|
||
|
||
return &KubeletContainerName{podFullName, podUID, containerName}, hash, nil
|
||
}
|
||
```
|
||
|
||
我们可以看到容器名称中包含如下几个字段,中间用下划线隔开,至少有6个字段,未来可能添加更多字段。
|
||
|
||
下面的是四个基本字段。
|
||
|
||
```
|
||
containerNamePrefix_containerName_PodFullName_PodUID
|
||
```
|
||
|
||
所有kubernetes启动的容器的containerNamePrefix都是k8s。
|
||
|
||
Kubernetes启动的docker容器的容器名称规范,下面以官方示例guestbook为例,Deployment 名为 frontend中启动的名为php-redis的docker容器的副本书为3。
|
||
|
||
Deployment frontend的配置如下:
|
||
|
||
```yaml
|
||
apiVersion: extensions/v1beta1
|
||
kind: Deployment
|
||
metadata:
|
||
name: frontend
|
||
spec:
|
||
template:
|
||
metadata:
|
||
labels:
|
||
app: guestbook
|
||
tier: frontend
|
||
spec:
|
||
containers:
|
||
- name: php-redis
|
||
image: harbor-001.jimmysong.io/library/gb-frontend:v4
|
||
resources:
|
||
requests:
|
||
cpu: 100m
|
||
memory: 100Mi
|
||
env:
|
||
- name: GET_HOSTS_FROM
|
||
value: dns
|
||
ports:
|
||
- containerPort: 80
|
||
```
|
||
|
||
我们选取三个实例中的一个运行php-redis的docker容器。
|
||
|
||
```
|
||
k8s_php-redis_frontend-2337258262-154p7_default_d8a2e2dd-3617-11e7-a4b0-ecf4bbe5d414_0
|
||
```
|
||
|
||
- containerNamePrefix:k8s
|
||
- containerName:php-redis
|
||
- podFullName:frontend-2337258262-154p7
|
||
- computeHash:154p7
|
||
- deploymentName:frontend
|
||
- replicaSetName:frontend-2337258262
|
||
- namespace:default
|
||
- podUID:d8a2e2dd-3617-11e7-a4b0-ecf4bbe5d414
|
||
|
||
kubernetes容器命名规则解析,见下图所示。
|
||
|
||
![kubernetes的容器命名规则示意图](../images/kubernetes-container-naming-rule.jpg)
|
||
|
||
## 使用Heapster进行集群监控
|
||
|
||
[Heapster](https://github.com/kubernetes/heapster)是kubernetes官方提供的监控方案,我们在前面的章节中已经讲解了如何部署和使用heapster,见[安装Heapster插件](../practice/heapster-addon-installation.md)。
|
||
|
||
但是Grafana显示的指标只根据Namespace和Pod两层来分类,实在有些单薄,我们希望通过应用的label增加service这一层分类。架构图如下:
|
||
|
||
![Heapster架构图(改进版)](../images/kubernetes-heapster-monitoring.png)
|
||
|
||
在不改变原有架构的基础上,通过应用的label来区分不同应用的pod。
|
||
|
||
## 应用监控
|
||
|
||
Kubernetes中应用的监控架构如图:
|
||
|
||
![应用监控架构图](../images/kubernetes-app-monitoring.png)
|
||
|
||
这种方式有以下几个要点:
|
||
|
||
- 访问kubernetes API获取应用Pod的IP和端口
|
||
- Pod labels作为监控metric的tag
|
||
- 直接访问应用的Pod的IP和端口获取应用监控数据
|
||
- metrics发送到[OWL](https://github.com/talkingdata/owl)中存储和展示
|
||
|
||
## 应用拓扑状态图
|
||
|
||
对于复杂的应用编排和依赖关系,我们希望能够有清晰的图标一览应用状态和拓扑关系,因此我们用到了Weaveworks开源的[scope](https://github.com/weaveworks/scope)。
|
||
|
||
**安装scope**
|
||
|
||
我们在kubernetes集群上使用standalone方式安装,详情参考[Installing Weave Scope](https://www.weave.works/docs/scope/latest/installing/#k8s)。
|
||
|
||
使用[scope.yaml](https://github.com/rootsongjc/kubernetes-handbook/blob/master/manifests/weave/scope.yaml)文件安装scope,该服务安装在`kube-system` namespace下。
|
||
|
||
```bash
|
||
$ kubectl apply -f scope.yaml
|
||
```
|
||
|
||
创建一个新的Ingress:`kube-system.yaml`,配置如下:
|
||
|
||
```yaml
|
||
apiVersion: extensions/v1beta1
|
||
kind: Ingress
|
||
metadata:
|
||
name: traefik-ingress
|
||
namespace: kube-system
|
||
spec:
|
||
rules:
|
||
- host: scope.weave.io
|
||
http:
|
||
paths:
|
||
- path: /
|
||
backend:
|
||
serviceName: weave-scope-app
|
||
servicePort: 80
|
||
```
|
||
|
||
执行`kubectl apply -f kube-system.yaml`后在你的主机上的`/etc/hosts`文件中添加一条记录:
|
||
|
||
```
|
||
172.20.0.119 scope.weave.io
|
||
```
|
||
|
||
在浏览器中访问`scope.weave.io`就可以访问到scope了,详见[边缘节点配置](edge-node-configuration.md)。
|
||
|
||
![应用拓扑图](../images/weave-scope-service-topology.jpg)
|
||
|
||
如上图所示,scope可以监控kubernetes集群中的一系列资源的状态、资源使用情况、应用拓扑、scale、还可以直接通过浏览器进入容器内部调试等。
|
||
|
||
## 参考
|
||
|
||
- [Monitoring in the Kubernetes Era](https://www.datadoghq.com/blog/monitoring-kubernetes-era/)
|