torch-mlir/lib/Conversion/TorchToLinalg/Uncategorized.cpp

1644 lines
71 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
#include "../PassDetail.h"
#include "PopulatePatterns.h"
#include "Utils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Matchers.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/ADT/APSInt.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
// Check if a ranked-tensor has the specified element type.
template <typename elementType> static bool hasElementType(Value tensor) {
auto tensorType = tensor.getType().cast<RankedTensorType>();
Type tensorElementType = tensorType.getElementType();
return tensorElementType.isa<elementType>();
}
template <arith::CmpFPredicate fpred, arith::CmpIPredicate iupred,
arith::CmpIPredicate ispred>
static Value createComparisonTemplate(OpBuilder &b, Location loc, Type type,
Value lhs, Value rhs) {
if (type.isa<mlir::FloatType>())
return b.create<arith::CmpFOp>(loc, fpred, lhs, rhs);
if (IntegerType intType = type.dyn_cast<mlir::IntegerType>()) {
if (intType.isUnsigned())
return b.create<arith::CmpIOp>(loc, iupred, lhs, rhs);
if (intType.isSigned())
return b.create<arith::CmpIOp>(loc, ispred, lhs, rhs);
}
llvm_unreachable("Unhandled element type for comparison");
}
static Value createGreaterThan(OpBuilder &b, Location loc, Type elementalType,
Value lhs, Value rhs) {
return createComparisonTemplate<arith::CmpFPredicate::UGT,
arith::CmpIPredicate::ugt,
arith::CmpIPredicate::sgt>(
b, loc, elementalType, lhs, rhs);
}
static Value createGreaterThanOrEqual(OpBuilder &b, Location loc,
Type elementalType, Value lhs,
Value rhs) {
return createComparisonTemplate<arith::CmpFPredicate::UGE,
arith::CmpIPredicate::uge,
arith::CmpIPredicate::sge>(
b, loc, elementalType, lhs, rhs);
}
static Value createLessThan(OpBuilder &b, Location loc, Type elementalType,
Value lhs, Value rhs) {
return createComparisonTemplate<arith::CmpFPredicate::ULT,
arith::CmpIPredicate::ult,
arith::CmpIPredicate::slt>(
b, loc, elementalType, lhs, rhs);
}
static Value createLessThanOrEqual(OpBuilder &b, Location loc,
Type elementalType, Value lhs, Value rhs) {
return createComparisonTemplate<arith::CmpFPredicate::ULE,
arith::CmpIPredicate::ule,
arith::CmpIPredicate::sle>(
b, loc, elementalType, lhs, rhs);
}
static Value createEqual(OpBuilder &b, Location loc, Type elementalType,
Value lhs, Value rhs) {
return createComparisonTemplate<arith::CmpFPredicate::UEQ,
arith::CmpIPredicate::eq,
arith::CmpIPredicate::eq>(
b, loc, elementalType, lhs, rhs);
}
static Value createNotEqual(OpBuilder &b, Location loc, Type elementalType,
Value lhs, Value rhs) {
return createComparisonTemplate<arith::CmpFPredicate::UNE,
arith::CmpIPredicate::ne,
arith::CmpIPredicate::ne>(
b, loc, elementalType, lhs, rhs);
}
static Value buildNormalCdf(OpBuilder &b, Location &loc, Value x, Value mean,
Value sigma) {
Type elementType = x.getType();
Value xMinusMean = b.create<arith::SubFOp>(loc, x, mean);
Value two = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 2));
Value sqrt2 = b.create<math::SqrtOp>(loc, two);
Value erfArg = b.create<arith::DivFOp>(loc, xMinusMean, sqrt2);
Value erf = b.create<math::ErfOp>(loc, erfArg);
Value one = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 1));
Value erfPlus1 = b.create<arith::AddFOp>(loc, one, erf);
Value oneHalf =
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 0.5));
Value normalCdf = b.create<arith::MulFOp>(loc, oneHalf, erfPlus1);
return normalCdf;
}
static Value buildUnitNormalCdf(OpBuilder &b, Location &loc, Value x) {
Type elementType = x.getType();
Value zero = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 0));
Value one = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 1));
return buildNormalCdf(b, loc, x, zero, one);
}
template <typename MathOpTy>
static Value createCalculationForMathOpWithDtypeConversion(
OpBuilder &b, TypeConverter *converter, Value payloadArg, Operation *op) {
Type dtype = converter->convertType(op->getResult(0).getType())
.template cast<RankedTensorType>()
.getElementType();
Location loc = op->getLoc();
Value arg = convertScalarToDtype(b, loc, payloadArg, dtype);
return b.create<MathOpTy>(loc, arg);
}
template <typename OpTy>
static Value createCompareTensorOp(OpBuilder &b, Location loc, OpTy op,
Value lhs, Value rhs) {
static_assert(std::is_same<OpTy, AtenLtTensorOp>() ||
std::is_same<OpTy, AtenLeTensorOp>() ||
std::is_same<OpTy, AtenGtTensorOp>() ||
std::is_same<OpTy, AtenGeTensorOp>() ||
std::is_same<OpTy, AtenEqTensorOp>(),
"unimplemented: op type not supported");
Type lhsDtype = lhs.getType();
Type rhsDtype = rhs.getType();
// TODO: Type promotion in case of different `lhsDtype` and `rhsDtype` needs
// to be handled.
if (lhsDtype != rhsDtype) {
op.emitError("unimplemented: lhs and rhs dtype must be same");
return nullptr;
}
Type elementalType =
op.getSelf().getType().template cast<BaseTensorType>().getDtype();
if constexpr (std::is_same<OpTy, AtenLtTensorOp>()) {
return createLessThan(b, loc, elementalType, lhs, rhs);
}
if constexpr (std::is_same<OpTy, AtenLeTensorOp>()) {
return createLessThanOrEqual(b, loc, elementalType, lhs, rhs);
}
if constexpr (std::is_same<OpTy, AtenGtTensorOp>()) {
return createGreaterThan(b, loc, elementalType, lhs, rhs);
}
if constexpr (std::is_same<OpTy, AtenGeTensorOp>()) {
return createGreaterThanOrEqual(b, loc, elementalType, lhs, rhs);
}
if constexpr (std::is_same<OpTy, AtenEqTensorOp>()) {
return createEqual(b, loc, elementalType, lhs, rhs);
}
llvm_unreachable("unimplemented: op type not supported");
}
static Value createLinalgPayloadCalculationForElementwiseOp(
OpBuilder &b, Location loc, TypeConverter *converter,
ValueRange payloadArgs, Operation *op, ArrayRef<Value> operands) {
if (isa<AtenFloorOp>(op))
return b.create<math::FloorOp>(loc, payloadArgs[0]);
if (isa<AtenCeilOp>(op))
return b.create<math::CeilOp>(loc, payloadArgs[0]);
if (isa<AtenTanhOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::TanhOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenExpOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::ExpOp>(
b, converter, payloadArgs[0], op);
}
2022-07-27 10:36:52 +08:00
if (isa<AtenExpm1Op>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::ExpM1Op>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenLogOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::LogOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenLog2Op>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::Log2Op>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenLog1pOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::Log1pOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenErfOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::ErfOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenSqrtOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::SqrtOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenRsqrtOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::RsqrtOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenNegOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<arith::NegFOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenSinOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::SinOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenCosOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::CosOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenAtanOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::AtanOp>(
b, converter, payloadArgs[0], op);
}
if (auto clone = dyn_cast<AtenCloneOp>(op)) {
int64_t memoryFormat;
if (!clone.getMemoryFormat().getType().isa<Torch::NoneType>() &&
(!matchPattern(clone.getMemoryFormat(),
m_TorchConstantInt(&memoryFormat)) ||
(memoryFormat != torch_upstream::MemoryFormat::Contiguous &&
memoryFormat != torch_upstream::MemoryFormat::ChannelsLast))) {
clone.emitError("unimplemented: only contiguous and channels last memory "
"format is supported");
return nullptr;
}
return payloadArgs[0];
}
if (auto bitwiseAndTensor = dyn_cast<AtenBitwiseAndTensorOp>(op)) {
if (bitwiseAndTensor.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
bitwiseAndTensor.emitError(
"Bitwise_And does not support floating point dtype");
return nullptr;
}
Type dtype = converter->convertType(bitwiseAndTensor.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
return b.create<arith::AndIOp>(loc, lhs, rhs);
}
if (auto bitwiseOrTensor = dyn_cast<AtenBitwiseOrTensorOp>(op)) {
if (bitwiseOrTensor.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
bitwiseOrTensor.emitError(
"Bitwise_Or does not support floating point dtype");
return nullptr;
}
Type dtype = converter->convertType(bitwiseOrTensor.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
return b.create<arith::OrIOp>(loc, lhs, rhs);
}
if (auto bitwiseXorTensor = dyn_cast<AtenBitwiseXorTensorOp>(op)) {
if (bitwiseXorTensor.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
bitwiseXorTensor.emitError(
"Bitwise_Xor does not support floating point dtype");
return nullptr;
}
Type dtype = converter->convertType(bitwiseXorTensor.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
return b.create<arith::XOrIOp>(loc, lhs, rhs);
}
if (isa<AtenLogicalOrOp, AtenLogicalAndOp, AtenLogicalXorOp>(op)) {
MLIRContext *context = op->getContext();
Type floatDtype = mlir::FloatType::getF64(context);
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], floatDtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], floatDtype);
Value zero =
b.create<arith::ConstantOp>(loc, b.getFloatAttr(floatDtype, 0));
Value lhsTest = createNotEqual(b, loc, floatDtype, lhs, zero);
Value rhsTest = createNotEqual(b, loc, floatDtype, rhs, zero);
if (isa<AtenLogicalOrOp>(op)) {
return b.create<arith::OrIOp>(loc, lhsTest, rhsTest);
}
if (isa<AtenLogicalAndOp>(op)) {
return b.create<arith::AndIOp>(loc, lhsTest, rhsTest);
}
if (isa<AtenLogicalXorOp>(op)) {
return b.create<arith::XOrIOp>(loc, lhsTest, rhsTest);
}
llvm_unreachable("Unknown op type");
}
if (isa<AtenLogicalNotOp>(op)) {
MLIRContext *context = op->getContext();
Type floatDtype = mlir::FloatType::getF64(context);
Value self = convertScalarToDtype(b, loc, payloadArgs[0], floatDtype);
Value zero =
b.create<arith::ConstantOp>(loc, b.getFloatAttr(floatDtype, 0));
return createEqual(b, loc, floatDtype, self, zero);
}
if (isa<AtenAbsOp>(op))
return b.create<math::AbsFOp>(loc, payloadArgs[0]);
if (isa<AtenSigmoidOp>(op)) {
auto negate = createCalculationForMathOpWithDtypeConversion<arith::NegFOp>(
b, converter, payloadArgs[0], op);
auto one =
b.create<arith::ConstantOp>(loc, FloatAttr::get(negate.getType(), 1));
auto exp = b.create<math::ExpOp>(loc, negate);
auto added = b.create<arith::AddFOp>(loc, exp, one);
return b.create<arith::DivFOp>(loc, one, added);
}
if (auto relu = dyn_cast<AtenReluOp>(op)) {
if (!relu.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
relu.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Type elementType = payloadArgs[0].getType();
Value constZero =
b.create<arith::ConstantOp>(loc, b.getZeroAttr(elementType));
Value pred = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGT,
payloadArgs[0], constZero);
return b.create<arith::SelectOp>(loc, pred, payloadArgs[0], constZero);
}
if (auto round = dyn_cast<AtenRoundOp>(op)) {
if (!round.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
round.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
return b.create<math::RoundEvenOp>(loc, payloadArgs[0]);
}
if (auto prelu = dyn_cast<AtenPreluOp>(op)) {
if (!prelu.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
prelu.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Type elementType = payloadArgs[0].getType();
Value constZero =
b.create<arith::ConstantOp>(loc, b.getZeroAttr(elementType));
Value pred = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGT,
payloadArgs[0], constZero);
Value positivePart =
b.create<arith::SelectOp>(loc, pred, payloadArgs[0], constZero);
Value negativePart =
b.create<arith::SelectOp>(loc, pred, constZero, payloadArgs[0]);
Value scale = convertScalarToDtype(b, loc, payloadArgs[1], elementType);
Value scaledNegativePart =
b.create<arith::MulFOp>(loc, negativePart, scale);
return b.create<arith::AddFOp>(loc, positivePart, scaledNegativePart);
}
if (auto gelu = dyn_cast<AtenGeluOp>(op)) {
if (!gelu.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
gelu.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
// TODO: Take approximation into account.
std::string approximate;
if (!matchPattern(gelu.getApproximate(), m_TorchConstantStr(approximate)) ||
approximate != "none")
return nullptr;
Value cdf = buildUnitNormalCdf(b, loc, payloadArgs[0]);
return b.create<arith::MulFOp>(loc, payloadArgs[0], cdf);
}
if (auto geluBackward = dyn_cast<AtenGeluBackwardOp>(op)) {
if (!geluBackward.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
geluBackward.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
// TODO: Take approximation into account.
std::string approximate;
if (!matchPattern(geluBackward.getApproximate(),
m_TorchConstantStr(approximate)) ||
approximate != "none")
return nullptr;
Type elementType = payloadArgs[1].getType();
Value cstAlpha0 = b.create<arith::ConstantOp>(
loc, FloatAttr::get(elementType, 1.12837916709551257390));
Value cstAlpha1 = b.create<arith::ConstantOp>(
loc, FloatAttr::get(elementType, 0.70710678118654752440));
Value oneHalf =
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 0.5));
Value kAlpha = b.create<arith::MulFOp>(loc, cstAlpha0, cstAlpha1);
Value kAlphaHalf = b.create<arith::MulFOp>(loc, kAlpha, oneHalf);
Value negOneHalf =
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, -0.5));
Value inputSquared =
b.create<arith::MulFOp>(loc, payloadArgs[1], payloadArgs[1]);
Value negHalfInputSquared =
b.create<arith::MulFOp>(loc, inputSquared, negOneHalf);
Value dinput = b.create<math::ExpOp>(loc, negHalfInputSquared);
Value cdf = buildUnitNormalCdf(b, loc, payloadArgs[1]);
Value dinputInput = b.create<arith::MulFOp>(loc, dinput, payloadArgs[1]);
Value dinputInputAlpha =
b.create<arith::MulFOp>(loc, dinputInput, kAlphaHalf);
Value cdfExt = b.create<arith::AddFOp>(loc, dinputInputAlpha, cdf);
return b.create<arith::MulFOp>(loc, payloadArgs[0], cdfExt);
}
if (auto hardtanhBackward = dyn_cast<AtenHardtanhBackwardOp>(op)) {
AtenHardtanhBackwardOp::Adaptor adaptor(operands);
if (!hardtanhBackward.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
hardtanhBackward.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Value gradOutput = payloadArgs[0];
Type elementType = gradOutput.getType();
Value self = convertScalarToDtype(b, loc, payloadArgs[1], elementType);
Value constantZero =
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 0.0));
Value min = convertScalarToDtype(b, loc, adaptor.getMinVal(), elementType);
Value max = convertScalarToDtype(b, loc, adaptor.getMaxVal(), elementType);
Value lesser =
b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULT, self, min);
Value greater =
b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGT, self, max);
Value cmp = b.create<arith::OrIOp>(loc, lesser, greater);
return b.create<arith::SelectOp>(loc, cmp, constantZero, gradOutput);
}
if (auto add = dyn_cast<AtenAddTensorOp>(op)) {
AtenAddTensorOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(add.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
Value alpha = convertScalarToDtype(b, loc, adaptor.getAlpha(), dtype);
if (dtype.isa<mlir::FloatType>()) {
Value scaled = b.create<arith::MulFOp>(loc, rhs, alpha);
return b.create<arith::AddFOp>(loc, lhs, scaled);
} else {
Value scaled = b.create<arith::MulIOp>(loc, rhs, alpha);
return b.create<arith::AddIOp>(loc, lhs, scaled);
}
}
if (auto sub = dyn_cast<AtenSubTensorOp>(op)) {
AtenSubTensorOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(sub.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
Value alpha = convertScalarToDtype(b, loc, adaptor.getAlpha(), dtype);
if (dtype.isa<mlir::FloatType>()) {
Value scaled = b.create<arith::MulFOp>(loc, rhs, alpha);
return b.create<arith::SubFOp>(loc, lhs, scaled);
} else {
Value scaled = b.create<arith::MulIOp>(loc, rhs, alpha);
return b.create<arith::SubIOp>(loc, lhs, scaled);
}
}
if (auto subScalar = dyn_cast<AtenSubScalarOp>(op)) {
Type dtype = converter->convertType(subScalar.getType())
.cast<RankedTensorType>()
.getElementType();
Value self = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value other = convertScalarToDtype(b, loc, operands[1], dtype);
Value alpha = convertScalarToDtype(b, loc, operands[2], dtype);
if (dtype.isa<mlir::FloatType>()) {
Value mult = b.create<arith::MulFOp>(loc, other, alpha);
return b.create<arith::SubFOp>(loc, self, mult);
} else if (dtype.isa<mlir::IntegerType>()) {
Value mult = b.create<arith::MulIOp>(loc, other, alpha);
return b.create<arith::SubIOp>(loc, self, mult);
}
subScalar.emitError("unimplemented: dtype other than float and integer "
"types are not supported.");
return nullptr;
}
if (auto addScalar = dyn_cast<AtenAddScalarOp>(op)) {
Type dtype = converter->convertType(addScalar.getType())
.cast<RankedTensorType>()
.getElementType();
Value self = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value other = convertScalarToDtype(b, loc, operands[1], dtype);
Value alpha = convertScalarToDtype(b, loc, operands[2], dtype);
if (dtype.isa<mlir::FloatType>()) {
Value mult = b.create<arith::MulFOp>(loc, other, alpha);
return b.create<arith::AddFOp>(loc, self, mult);
} else if (dtype.isa<mlir::IntegerType>()) {
Value mult = b.create<arith::MulIOp>(loc, other, alpha);
return b.create<arith::AddIOp>(loc, self, mult);
}
addScalar.emitError("unimplemented: dtype other than float and integer "
"types are not supported.");
return nullptr;
}
if (auto mul = dyn_cast<AtenMulTensorOp>(op)) {
AtenMulTensorOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(mul.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
if (dtype.isa<mlir::FloatType>()) {
return b.create<arith::MulFOp>(loc, lhs, rhs);
} else {
return b.create<arith::MulIOp>(loc, lhs, rhs);
}
}
if (auto atan2 = dyn_cast<AtenAtan2Op>(op)) {
Type dtype = converter->convertType(atan2.getType())
.cast<RankedTensorType>()
.getElementType();
if (!dtype.isa<mlir::FloatType>()) {
atan2.emitError("Atan2 requires floating point result type");
return nullptr;
}
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
return b.create<math::Atan2Op>(loc, lhs, rhs);
}
if (auto ltTensor = dyn_cast<AtenLtTensorOp>(op)) {
return createCompareTensorOp(b, loc, ltTensor, payloadArgs[0],
payloadArgs[1]);
}
if (auto leTensor = dyn_cast<AtenLeTensorOp>(op)) {
return createCompareTensorOp(b, loc, leTensor, payloadArgs[0],
payloadArgs[1]);
}
if (auto gtTensor = dyn_cast<AtenGtTensorOp>(op)) {
return createCompareTensorOp(b, loc, gtTensor, payloadArgs[0],
payloadArgs[1]);
}
if (auto geTensor = dyn_cast<AtenGeTensorOp>(op)) {
return createCompareTensorOp(b, loc, geTensor, payloadArgs[0],
payloadArgs[1]);
}
if (auto eqTensor = dyn_cast<AtenEqTensorOp>(op)) {
return createCompareTensorOp(b, loc, eqTensor, payloadArgs[0],
payloadArgs[1]);
}
if (auto div = dyn_cast<AtenDivTensorOp>(op)) {
AtenDivTensorOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(div.getType())
.cast<RankedTensorType>()
.getElementType();
if (!dtype.isa<mlir::FloatType>()) {
div.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
return b.create<arith::DivFOp>(loc, lhs, rhs);
}
if (auto divTensorMode = dyn_cast<AtenDivTensorModeOp>(op)) {
AtenDivTensorModeOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(divTensorMode.getType())
.cast<RankedTensorType>()
.getElementType();
if (!dtype.isa<mlir::FloatType>()) {
divTensorMode.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
Value div = b.create<arith::DivFOp>(loc, lhs, rhs);
if (divTensorMode.getRoundingMode().getType().isa<Torch::NoneType>())
return div;
std::string roundingMode;
if (!matchPattern(divTensorMode.getRoundingMode(),
m_TorchConstantStr(roundingMode))) {
divTensorMode.emitError("only support constant str rounding mode");
return nullptr;
}
if (roundingMode == "trunc") {
// "trunc" - rounds the results of the division towards zero. Equivalent
// to C-style integer division.
Value ceil = b.create<math::CeilOp>(loc, div);
Value floor = b.create<math::FloorOp>(loc, div);
Value cstZero = b.create<arith::ConstantOp>(loc, b.getZeroAttr(dtype));
Value pred =
b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULT, div, cstZero);
return b.create<arith::SelectOp>(loc, pred, ceil, floor);
}
if (roundingMode == "floor") {
// "floor" - rounds the results of the division down. Equivalent to
// floor division in Python (the // operator)
return b.create<math::FloorOp>(loc, div);
}
divTensorMode.emitError("invalid rounding mode");
return nullptr;
}
if (auto pow = dyn_cast<AtenPowTensorScalarOp>(op)) {
if (!pow.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
pow.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Type dtype = pow.getSelf().getType().cast<ValueTensorType>().getDtype();
Value expPromoted = convertScalarToDtype(b, loc, operands[1], dtype);
return b.create<math::PowFOp>(loc, payloadArgs[0], expPromoted);
}
if (auto pow = dyn_cast<AtenPowTensorTensorOp>(op)) {
Type dtype = converter->convertType(pow.getType())
.cast<RankedTensorType>()
.getElementType();
if (!dtype.isa<mlir::FloatType>()) {
pow.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
return b.create<math::PowFOp>(loc, lhs, rhs);
}
if (auto imag = dyn_cast<AtenImagOp>(op)) {
Type dtype = converter->convertType(imag.getType())
.cast<RankedTensorType>()
.getElementType();
if (!dtype.isa<mlir::FloatType>()) {
imag.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Value imagVal = b.create<complex::ImOp>(loc, payloadArgs[0]);
return imagVal;
}
if (auto real = dyn_cast<AtenRealOp>(op)) {
Type dtype = converter->convertType(real.getType())
.cast<RankedTensorType>()
.getElementType();
if (!dtype.isa<mlir::FloatType>()) {
real.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Value realVal = b.create<complex::ReOp>(loc, payloadArgs[0]);
return realVal;
}
if (auto gtScalar = dyn_cast<AtenGtScalarOp>(op)) {
Type dtype = gtScalar.getSelf().getType().cast<BaseTensorType>().getDtype();
// TODO: `gtTensor` and `gtScalar` share similar code and can be called from
// one static function.
Value otherPromoted =
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
if (dtype.isa<mlir::FloatType>())
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGT,
payloadArgs[0], otherPromoted);
if (IntegerType intType = dtype.dyn_cast<mlir::IntegerType>()) {
if (!operands[1].getType().isa<mlir::IntegerType>()) {
// TODO: Promote tensor args from integer to float.
gtScalar.emitError(
"unimplemented: type promotion from tensor to scalar.");
return nullptr;
}
if (intType.isUnsigned())
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ugt,
payloadArgs[0], otherPromoted);
if (intType.isSigned())
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt,
payloadArgs[0], otherPromoted);
}
gtScalar.emitError("unimplemented: dtype isn't supported.");
return nullptr;
}
if (auto geScalar = dyn_cast<AtenGeScalarOp>(op)) {
Type dtype = geScalar.getSelf().getType().cast<BaseTensorType>().getDtype();
// TODO: The `AtenGeScalarOp` and `AtenGtScalarOp` share a lot of code that
// can be refactored.
Value otherPromoted =
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
if (dtype.isa<mlir::FloatType>())
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGE,
payloadArgs[0], otherPromoted);
if (IntegerType intType = dtype.dyn_cast<mlir::IntegerType>()) {
if (!operands[1].getType().isa<mlir::IntegerType>()) {
// TODO: Promote tensor args from integer to float.
geScalar.emitError(
"unimplemented: type promotion from tensor to scalar.");
return nullptr;
}
if (intType.isUnsigned())
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge,
payloadArgs[0], otherPromoted);
if (intType.isSigned())
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge,
payloadArgs[0], otherPromoted);
}
geScalar.emitError("unimplemented: dtype isn't supported.");
return nullptr;
}
if (auto eqScalar = dyn_cast<AtenEqScalarOp>(op)) {
Type dtype = eqScalar.getSelf().getType().cast<BaseTensorType>().getDtype();
Value otherPromoted =
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
if (dtype.isa<mlir::IntegerType>()) {
if (!operands[1].getType().isa<mlir::IntegerType>()) {
// TODO: Promote tensor operand from integer to float.
eqScalar.emitError(
"unimplemented: type promotion from tensor to scalar");
return nullptr;
}
}
return createEqual(b, loc, dtype, payloadArgs[0], otherPromoted);
}
if (auto neScalar = dyn_cast<AtenNeScalarOp>(op)) {
Type dtype = neScalar.getSelf().getType().cast<BaseTensorType>().getDtype();
Value otherPromoted =
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
if (dtype.isa<mlir::IntegerType>()) {
if (!operands[1].getType().isa<mlir::IntegerType>()) {
// TODO: Promote tensor operand from integer to float.
neScalar.emitError(
"unimplemented: type promotion from tensor to scalar");
return nullptr;
}
}
return createNotEqual(b, loc, dtype, payloadArgs[0], otherPromoted);
}
if (auto ltScalar = dyn_cast<AtenLtScalarOp>(op)) {
Type dtype = ltScalar.getSelf().getType().cast<BaseTensorType>().getDtype();
Value otherPromoted =
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
// TODO: Both tensor and scalar variants of `aten.gt` and `aten.lt` share
// a lot of code that can be refactored.
if (dtype.isa<mlir::FloatType>())
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULT,
payloadArgs[0], otherPromoted);
if (IntegerType intType = dtype.dyn_cast<mlir::IntegerType>()) {
if (!operands[1].getType().isa<mlir::IntegerType>()) {
// TODO: Promote tensor operand from integer to float.
ltScalar.emitError(
"unimplemented: type promotion from tensor to scalar");
return nullptr;
}
if (intType.isUnsigned())
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
payloadArgs[0], otherPromoted);
if (intType.isSigned())
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
payloadArgs[0], otherPromoted);
}
ltScalar.emitError("unimplemented: dtype isn't supported.");
return nullptr;
}
if (auto leScalar = dyn_cast<AtenLeScalarOp>(op)) {
Type dtype = leScalar.getSelf().getType().cast<BaseTensorType>().getDtype();
Value otherPromoted =
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
// TODO: The `AtenLeScalarOp` and `AtenLtScalarOp` share a lot of code
// that can be refactored.
if (dtype.isa<mlir::FloatType>())
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULE,
payloadArgs[0], otherPromoted);
if (IntegerType intType = dtype.dyn_cast<mlir::IntegerType>()) {
if (!operands[1].getType().isa<mlir::IntegerType>()) {
// TODO: Promote tensor operand from integer to float.
leScalar.emitError(
"unimplemented: type promotion from tensor to scalar");
return nullptr;
}
if (intType.isUnsigned())
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule,
payloadArgs[0], otherPromoted);
if (intType.isSigned())
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sle,
payloadArgs[0], otherPromoted);
}
leScalar.emitError("unimplemented: dtype isn't supported.");
return nullptr;
}
if (auto whereSelf = dyn_cast<AtenWhereSelfOp>(op)) {
Type dtype = converter->convertType(whereSelf.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[2], dtype);
return b.create<arith::SelectOp>(loc, payloadArgs[0], lhs, rhs);
}
if (auto lerp = dyn_cast<AtenLerpTensorOp>(op)) {
if (!lerp.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
lerp.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
AtenLerpTensorOp::Adaptor adaptor(payloadArgs);
auto start = adaptor.getSelf();
auto end = adaptor.getEnd();
auto weight = adaptor.getWeight();
auto delta = b.create<arith::SubFOp>(loc, end, start);
auto weightedDelta = b.create<arith::MulFOp>(loc, delta, weight);
return b.create<arith::AddFOp>(loc, start, weightedDelta);
}
if (auto minimum = dyn_cast<AtenMinimumOp>(op)) {
Type dtype = minimum.getType().cast<BaseTensorType>().getDtype();
Type elemTy = converter->convertType(minimum.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], elemTy);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], elemTy);
Value pred = createLessThan(b, loc, dtype, lhs, rhs);
return b.create<arith::SelectOp>(loc, pred, lhs, rhs);
}
if (auto maximum = dyn_cast<AtenMaximumOp>(op)) {
Type dtype = maximum.getType().cast<BaseTensorType>().getDtype();
Type elemTy = converter->convertType(maximum.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], elemTy);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], elemTy);
Value pred = createGreaterThan(b, loc, dtype, lhs, rhs);
return b.create<arith::SelectOp>(loc, pred, lhs, rhs);
}
if (auto clamp = dyn_cast<AtenClampOp>(op)) {
Type dtype = converter->convertType(clamp.getType())
.cast<RankedTensorType>()
.getElementType();
if (!dtype.isa<mlir::FloatType>()) {
clamp.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
AtenClampOp::Adaptor adaptor(operands);
auto min = adaptor.getMin();
auto max = adaptor.getMax();
if (min.getType().isa<Torch::OptionalType>() ||
max.getType().isa<Torch::OptionalType>()) {
clamp.emitError("unimplemented: runtime optional type");
return nullptr;
}
auto result = payloadArgs[0];
if (!min.getType().isa<Torch::NoneType>()) {
auto minPromoted = convertScalarToDtype(b, loc, min, dtype);
auto pred = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULT,
result, minPromoted);
result = b.create<arith::SelectOp>(loc, pred, minPromoted, result);
}
if (!max.getType().isa<Torch::NoneType>()) {
auto maxPromoted = convertScalarToDtype(b, loc, max, dtype);
auto pred = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGT,
result, maxPromoted);
result = b.create<arith::SelectOp>(loc, pred, maxPromoted, result);
}
return result;
}
if (auto rsub = dyn_cast<AtenRsubScalarOp>(op)) {
Type dtype = converter->convertType(rsub.getType())
.cast<RankedTensorType>()
.getElementType();
Value self = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value other = convertScalarToDtype(b, loc, operands[1], dtype);
Value alpha = convertScalarToDtype(b, loc, operands[2], dtype);
if (dtype.isa<mlir::FloatType>()) {
Value mult = b.create<arith::MulFOp>(loc, self, alpha);
return b.create<arith::SubFOp>(loc, other, mult);
} else if (dtype.isa<mlir::IntegerType>()) {
Value mult = b.create<arith::MulIOp>(loc, self, alpha);
return b.create<arith::SubIOp>(loc, other, mult);
}
rsub.emitError("unimplemented: dtype other than float and integer "
"types are not supported.");
return nullptr;
}
if (auto mulScalar = dyn_cast<AtenMulScalarOp>(op)) {
Type dtype = converter->convertType(mulScalar.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, operands[1], dtype);
if (dtype.isa<mlir::FloatType>())
return b.create<arith::MulFOp>(loc, lhs, rhs);
if (dtype.isa<mlir::IntegerType>())
return b.create<arith::MulIOp>(loc, lhs, rhs);
mulScalar.emitError("unimplemented: Only integer/float dtype supported");
return nullptr;
}
if (auto atenToDtype = dyn_cast<AtenToDtypeOp>(op)) {
Value input = payloadArgs[0];
Type dtype = converter->convertType(atenToDtype.getType())
.cast<RankedTensorType>()
.getElementType();
Value result = convertScalarToDtype(b, loc, input, dtype);
return result;
}
if (auto divScalar = dyn_cast<AtenDivScalarOp>(op)) {
Type dtype = converter->convertType(divScalar.getType())
.cast<RankedTensorType>()
.getElementType();
if (!dtype.isa<mlir::FloatType>()) {
divScalar.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Value self = payloadArgs[0];
Value other = convertScalarToDtype(b, loc, operands[1], dtype);
return b.create<arith::DivFOp>(loc, self, other);
}
if (auto remScalar = dyn_cast<AtenRemainderScalarOp>(op)) {
Type newResultType = converter->convertType(remScalar.getType())
.cast<RankedTensorType>()
.getElementType();
Value self = convertScalarToDtype(b, loc, payloadArgs[0], newResultType);
Value other = convertScalarToDtype(b, loc, operands[1], newResultType);
Value result;
if (newResultType.isa<mlir::FloatType>()) {
result = b.create<arith::RemFOp>(loc, self, other);
} else if (newResultType.isa<mlir::IntegerType>()) {
result = b.create<arith::RemSIOp>(loc, self, other);
} else {
remScalar.emitError(
"Unsupported type encountered for AtenRemainderScalarOp.");
}
return result;
}
if (auto reciprocal = dyn_cast<AtenReciprocalOp>(op)) {
Type dtype = converter->convertType(reciprocal.getType())
.cast<RankedTensorType>()
.getElementType();
Value arg = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Type elementType = arg.getType();
// assert(element != 0)
auto zero =
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 0.0));
auto pred =
b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ONE, arg, zero);
b.create<cf::AssertOp>(
loc, pred, b.getStringAttr("unimplemented: tensor with zero element"));
auto one =
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 1.0));
return b.create<arith::DivFOp>(loc, one, arg);
}
if (auto thresholdOp = dyn_cast<AtenThresholdOp>(op)) {
// The approach used here is as follows:
// result = self <= threshold ? value : self
AtenThresholdOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(thresholdOp.getType())
.cast<RankedTensorType>()
.getElementType();
Value self = payloadArgs[0];
Value threshold = convertScalarToDtype(b, loc, adaptor.getThreshold(), dtype);
Value value = convertScalarToDtype(b, loc, adaptor.getValue(), dtype);
Value predicate;
if (dtype.isa<mlir::FloatType>())
predicate = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULE, self,
threshold);
else
predicate = b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sle, self,
threshold);
return b.create<arith::SelectOp>(loc, predicate, value, self);
}
if (auto thresholdBackward = dyn_cast<AtenThresholdBackwardOp>(op)) {
// The approach used here is as follows:
// result = self <= threshold ? 0 : grad
AtenThresholdBackwardOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(thresholdBackward.getType())
.cast<RankedTensorType>()
.getElementType();
Value grad = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value self = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
Value threshold = convertScalarToDtype(b, loc, adaptor.getThreshold(), dtype);
Value constantZero = b.create<arith::ConstantOp>(loc, b.getZeroAttr(dtype));
Value predicate;
if (dtype.isa<mlir::FloatType>())
predicate = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULE, self,
threshold);
else
predicate = b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sle, self,
threshold);
return b.create<arith::SelectOp>(loc, predicate, constantZero, grad);
}
if (auto fillScalar = dyn_cast<AtenFillScalarOp>(op)) {
AtenFillScalarOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(fillScalar.getType())
.cast<RankedTensorType>()
.getElementType();
return convertScalarToDtype(b, loc, adaptor.getValue(), dtype);
}
if (auto maskedFillTensor = dyn_cast<AtenMaskedFillTensorOp>(op)) {
AtenMaskedFillScalarOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(maskedFillTensor.getType())
.cast<RankedTensorType>()
.getElementType();
Value input = payloadArgs[0];
Value mask = payloadArgs[1];
Value fillValue = convertScalarToDtype(b, loc, payloadArgs[2], dtype);
return b.create<arith::SelectOp>(loc, mask, fillValue, input);
}
if (auto fillTensor = dyn_cast<AtenFillTensorOp>(op)) {
AtenFillTensorOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(fillTensor.getType())
.cast<RankedTensorType>()
.getElementType();
return convertScalarToDtype(b, loc, payloadArgs[1], dtype);
}
if (auto triu = dyn_cast<AtenTriuOp>(op)) {
// Check if the rank of the input tensor is valid.
AtenTriuOp::Adaptor adaptor(operands);
auto inputType = adaptor.getSelf().getType().cast<RankedTensorType>();
uint64_t inputRank = inputType.getRank();
if (inputRank < 2) {
triu.emitError("too few dimensions to compute triangular part of matrix");
return nullptr;
}
// Use the indices of the two innermost dimensions.
auto rowIndex = b.create<linalg::IndexOp>(loc, inputRank - 2);
Value rowIndexI64 = castIndexToInt64(b, loc, rowIndex);
auto colIndex = b.create<linalg::IndexOp>(loc, inputRank - 1);
Value colIndexI64 = castIndexToInt64(b, loc, colIndex);
// columnIndex >= rowIndex + diagonal?
auto sum = b.create<arith::AddIOp>(loc, rowIndexI64, adaptor.getDiagonal());
auto pred = b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge,
colIndexI64, sum);
Value scalar = payloadArgs[0];
Type elementType = inputType.getElementType();
Value zero = getConstant(b, loc, 0, elementType);
return b.create<arith::SelectOp>(loc, pred, scalar, zero);
}
if (auto bitwiseNot = dyn_cast<AtenBitwiseNotOp>(op)) {
Type elementType = converter->convertType(bitwiseNot.getType())
.cast<RankedTensorType>()
.getElementType();
if (elementType.isa<mlir::FloatType>()) {
bitwiseNot.emitError("Bitwise_Not does not support floating point dtype");
return nullptr;
}
Value allOnesVal = b.create<arith::ConstantOp>(
loc, b.getIntegerAttr(
elementType,
APSInt::getAllOnes(elementType.getIntOrFloatBitWidth())));
return b.create<arith::XOrIOp>(loc, payloadArgs[0], allOnesVal);
}
op->emitError("unimplemented lowering in "
"createLinalgPayloadCalculationForElementwiseOp");
return nullptr;
}
namespace {
// Converts an elementwise op.
// This specifically includes:
// - converting elementwise ops of any tensor arity
// - converting elementwise ops with any number of scalar captures (such as a
// scalar alpha to torch.aten.Add)
// - broadcasting of static size-1 dimensions
//
// Currently, we adopt the behavior that "size 1" broadcasting is a runtime
// error if it happens dynamically.
//
// Looking forward a bit, eventually, it probably makes sense to have
// a "linalg.generic-like" op for modeling a fused subgraph of numpy-broadcasted
// operands. Modeling elementwise ops that way is potentially useful to allow a
// more centralized reasoning about multiversioning. However a cost model will
// be needed for "pre-fusing" elementwise ops that way, as it can potentially be
// a pessimization. A mild extension of this pattern should work for such a
// general op.
class ConvertElementwiseOp : public ConversionPattern {
public:
ConvertElementwiseOp(TypeConverter &typeConverter, MLIRContext *context)
: ConversionPattern(typeConverter, MatchAnyOpTypeTag(), /*benefit=*/1,
context) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
if (!isa<AtenTanhOp, AtenReluOp, AtenPreluOp, AtenGeluOp,
AtenGeluBackwardOp, AtenAddTensorOp, AtenMulTensorOp,
AtenDivTensorOp, AtenDivTensorModeOp, AtenSubTensorOp, AtenAtan2Op,
2022-07-27 10:36:52 +08:00
AtenLerpTensorOp, AtenSigmoidOp, AtenExpOp, AtenExpm1Op,
AtenMinimumOp, AtenMaximumOp, AtenToDtypeOp, AtenClampOp,
AtenRsubScalarOp, AtenMulScalarOp, AtenLogOp, AtenErfOp,
AtenSqrtOp, AtenFloorOp, AtenPowTensorScalarOp,
AtenPowTensorTensorOp, AtenLog2Op, AtenLog1pOp, AtenRsqrtOp,
AtenDivScalarOp, AtenRemainderScalarOp, AtenAbsOp,
AtenReciprocalOp, AtenBitwiseAndTensorOp, AtenBitwiseOrTensorOp,
AtenBitwiseXorTensorOp, AtenGtScalarOp, AtenGeScalarOp,
AtenEqScalarOp, AtenLtScalarOp, AtenLeScalarOp, AtenWhereSelfOp,
AtenCeilOp, AtenGtTensorOp, AtenGeTensorOp, AtenEqTensorOp,
AtenLtTensorOp, AtenLeTensorOp, AtenSubScalarOp, AtenAddScalarOp,
AtenThresholdOp, AtenThresholdBackwardOp, AtenHardtanhBackwardOp,
AtenCloneOp, AtenSinOp, AtenCosOp, AtenNeScalarOp, AtenNegOp,
AtenMaskedFillTensorOp, AtenLogicalOrOp, AtenLogicalAndOp,
AtenLogicalXorOp, AtenLogicalNotOp, AtenTriuOp, AtenBitwiseNotOp,
AtenRoundOp, AtenFillScalarOp, AtenFillTensorOp, AtenAtanOp,
AtenRealOp, AtenImagOp>(op))
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op->getLoc();
auto tensorOperands = llvm::to_vector<6>(llvm::make_filter_range(
operands, [](Value v) { return v.getType().isa<RankedTensorType>(); }));
auto resultType = getTypeConverter()
->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
bool hadErrorCreatingPayload = false;
Value generic = torch_to_linalg::createElementwiseLinalgGeneric(
rewriter, loc, tensorOperands, resultType.getElementType(),
[&](OpBuilder &b, Location loc, ValueRange payloadArgs) {
Value result = createLinalgPayloadCalculationForElementwiseOp(
b, loc, getTypeConverter(), payloadArgs, op, operands);
if (!result) {
hadErrorCreatingPayload = true;
return;
}
b.create<linalg::YieldOp>(loc, result);
});
if (hadErrorCreatingPayload)
return failure();
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, generic);
return success();
}
};
} // namespace
// Given `input`, `target`, `nll_loss_forward` is given by:
// for i in range(0, len(target)):
// indi = target[i];
// nll_loss_forward[i] = -(input[i][indi]);
// TODO: `weight`operand is still to be taken care of.
namespace {
class ConvertAtenNllLossForwardOp
: public OpConversionPattern<AtenNllLossForwardOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenNllLossForwardOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op->getLoc();
Value input = adaptor.getSelf();
Value target = adaptor.getTarget();
Value weight = adaptor.getWeight();
int64_t reduction;
if (!matchPattern(op.getReduction(), m_TorchConstantInt(&reduction)))
return rewriter.notifyMatchFailure(op, "dim must be constant");
// TODO: Incorporate the weight argument.
if (!weight.getType().isa<mlir::torch::Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "Unimplemented, the weight operand is not incorporated.");
Value ignoreIndex = adaptor.getIgnoreIndex();
Value ignoreIndexVal = castIntToIndex(rewriter, loc, ignoreIndex);
unsigned inputRank = input.getType().cast<RankedTensorType>().getRank();
unsigned targetRank = target.getType().cast<RankedTensorType>().getRank();
// TODO: Add support for k-dim loss.
if (inputRank > 2) {
return rewriter.notifyMatchFailure(
op, "expected input and target to be rank <= 2");
}
RankedTensorType resultType = getTypeConverter()
->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
Type elementType = resultType.getElementType();
Value zeroVal = rewriter.create<arith::ConstantOp>(
loc, rewriter.getZeroAttr(elementType));
Value finalRes = torch_to_linalg::createElementwiseLinalgGeneric(
rewriter, loc, {target}, elementType,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value targetVal = args[0];
Value indTarget = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getIndexType(), targetVal);
// The final result is given by:
// final_res = (indTarget == ignoreIndexVal) ? 0 :
// input[indI][IndTarget]
Value cmpEq = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, indTarget, ignoreIndexVal);
SmallVector<Value> extractionIndices{indTarget};
if (inputRank == 2) {
Value indI = rewriter.create<linalg::IndexOp>(loc, 0);
extractionIndices.insert(extractionIndices.begin(), indI);
}
Value result =
rewriter.create<tensor::ExtractOp>(loc, input, extractionIndices);
Value negate =
rewriter.create<arith::NegFOp>(loc, elementType, result);
Value selectFinal =
rewriter.create<arith::SelectOp>(loc, cmpEq, zeroVal, negate);
b.create<linalg::YieldOp>(loc, selectFinal);
});
if (reduction == torch_upstream::Reduction::Sum ||
reduction == torch_upstream::Reduction::Mean) {
Value numOfElems = getTensorSize(rewriter, loc, finalRes);
numOfElems = convertScalarToDtype(rewriter, loc, numOfElems, elementType);
llvm::iota_range<int64_t> dimsToReduce(0, targetRank,
/*inclusive=*/false);
DenseSet<int64_t> dimSet(dimsToReduce.begin(), dimsToReduce.end());
auto opInfo = torch_to_linalg::ReductionOpInfo{false, finalRes, dimSet};
finalRes = torch_to_linalg::createReductionLinalgGeneric(
rewriter, loc, opInfo,
/*initElem=*/zeroVal,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value newVal = args[0];
Value accumulator = args[1];
if (reduction == torch_upstream::Reduction::Mean)
newVal = b.create<arith::DivFOp>(loc, newVal, numOfElems);
Value result = b.create<arith::AddFOp>(loc, newVal, accumulator);
b.create<linalg::YieldOp>(loc, result);
});
}
// TODO: Update the second result tensor.
Value weightUpdated = createZeroInitTensor(rewriter, loc, {}, elementType);
rewriter.replaceOp(op, {finalRes, weightUpdated});
return success();
}
};
} // namespace
/// Inverted STD: rSTD = 1 / sqrt(var + eps).
static Value calculateRSTD(OpBuilder &b, Location loc, Type elemTy, Value eps,
Value var) {
// The eps is always f64.
Value truncatedEps = b.create<arith::TruncFOp>(loc, elemTy, eps);
Value varPlusEps = b.create<arith::AddFOp>(loc, var, truncatedEps);
Value rSTD = b.create<math::RsqrtOp>(loc, varPlusEps);
return rSTD;
}
// Normalization formula:
// ((input - mean) * rSTD * weight + bias
static Value createLinalgPayloadCalculationForNormOpsWithRSTD(
OpBuilder &b, Location loc, Type elemTy, Value input, Value mean,
Value rSTD, Value eps, Value weight, Value bias) {
Value inputSubMean = b.create<arith::SubFOp>(loc, input, mean);
Value temp = b.create<arith::MulFOp>(loc, inputSubMean, rSTD);
Value timesWeight = b.create<arith::MulFOp>(loc, temp, weight);
Value plusBias = b.create<arith::AddFOp>(loc, timesWeight, bias);
return plusBias;
}
static Value createLinalgPayloadCalculationForNormOpsWithVar(
OpBuilder &b, Location loc, Type elemTy, Value input, Value mean, Value var,
Value eps, Value weight, Value bias) {
Value rSTD = calculateRSTD(b, loc, elemTy, eps, var);
Value result = createLinalgPayloadCalculationForNormOpsWithRSTD(
b, loc, elemTy, input, mean, rSTD, eps, weight, bias);
return result;
}
namespace {
class ConvertAtenBatchNormOp : public OpConversionPattern<AtenBatchNormOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenBatchNormOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MLIRContext *context = op->getContext();
Location loc = op->getLoc();
Value input = adaptor.getInput();
Value weight = adaptor.getWeight();
Value bias = adaptor.getBias();
Value runningMean = adaptor.getRunningMean();
Value runningVar = adaptor.getRunningVar();
Value training = adaptor.getTraining();
Value eps = adaptor.getEps();
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
// TODO: Handle the None cases for the optional parameters:
// weight, bias.
if (failed(checkNotNone(rewriter, op, weight)) ||
failed(checkNotNone(rewriter, op, bias)) ||
failed(checkNotNone(rewriter, op, runningMean)) ||
failed(checkNotNone(rewriter, op, runningVar)))
return failure();
auto inputType = input.getType().cast<RankedTensorType>();
auto weightType = weight.getType().cast<RankedTensorType>();
auto biasType = bias.getType().cast<RankedTensorType>();
auto runningMeanType = runningMean.getType().cast<RankedTensorType>();
auto runningVarType = runningVar.getType().cast<RankedTensorType>();
auto inputRank = inputType.getRank();
if (inputRank < 2)
return rewriter.notifyMatchFailure(
op, "input should have rank larger than 1");
if (weightType.getRank() != 1 || biasType.getRank() != 1 ||
runningMeanType.getRank() != 1 || runningVarType.getRank() != 1) {
return rewriter.notifyMatchFailure(
op, "expect weight, bias, running_mean and running_var to be rank 1");
}
// TODO: Add support for training.
auto constFalse = rewriter.create<arith::ConstantOp>(
loc, IntegerAttr::get(IntegerType::get(context, 1), 0));
auto trainingFalse = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, training, constFalse);
rewriter.create<cf::AssertOp>(
loc, trainingFalse,
rewriter.getStringAttr("training is not supported for now"));
// num_features C from an expected input of size (N,C,D,H,W ...)
Value numFeatures = rewriter.create<tensor::DimOp>(loc, input, 1);
auto contractingDim0EqualsNumFeatures = [&](Value v) {
auto dim0 = rewriter.create<tensor::DimOp>(loc, v, 0);
auto dim0Equal = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, numFeatures, dim0);
rewriter.create<cf::AssertOp>(
loc, dim0Equal,
rewriter.getStringAttr(
"expect the size of dim 0 equal to the number of features"));
};
contractingDim0EqualsNumFeatures(weight);
contractingDim0EqualsNumFeatures(bias);
contractingDim0EqualsNumFeatures(runningMean);
contractingDim0EqualsNumFeatures(runningVar);
auto indexingMap = AffineMap::get(
/*dimCount=*/inputRank,
/*symbolCount=*/0, rewriter.getAffineDimExpr(1), context);
SmallVector<AffineMap> indexingMaps = {
rewriter.getMultiDimIdentityMap(inputRank), // input
indexingMap, // weight
indexingMap, // bias
indexingMap, // runningMean
indexingMap, // runningVar
rewriter.getMultiDimIdentityMap(inputRank), // output
};
SmallVector<utils::IteratorType> iteratorTypes(
inputRank, utils::IteratorType::parallel);
Value batchNorm =
rewriter
.create<linalg::GenericOp>(
loc, input.getType(),
ValueRange{input, weight, bias, runningMean, runningVar}, input,
/*indexingMaps=*/indexingMaps,
/*iteratorTypes=*/iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value input = args[0], weight = args[1], bias = args[2],
mean = args[3], var = args[4];
Value result =
createLinalgPayloadCalculationForNormOpsWithVar(
b, loc, var.getType(), input, mean, var, eps, weight,
bias);
b.create<linalg::YieldOp>(loc, result);
})
.getResult(0);
Type newResultType = getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, batchNorm);
return success();
}
};
} // namespace
namespace {
class ConvertAtenNllLossBackwardOp
: public OpConversionPattern<AtenNllLossBackwardOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenNllLossBackwardOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op->getLoc();
Value gradOutput = adaptor.getGradOutput();
Value input = adaptor.getSelf();
Value target = adaptor.getTarget();
Value weight = adaptor.getWeight();
bool weightIsNone = op.getWeight().getType().isa<Torch::NoneType>();
Value ignoreIndex = castIntToIndex(rewriter, loc, adaptor.getIgnoreIndex());
Value totalWeight = adaptor.getTotalWeight();
auto inputType = input.getType().cast<RankedTensorType>();
int inputRank = inputType.getRank();
auto gradOutputType = gradOutput.getType().cast<RankedTensorType>();
Type resultElementType = gradOutputType.getElementType();
int64_t reduction;
if (!matchPattern(op.getReduction(), m_TorchConstantInt(&reduction)))
return rewriter.notifyMatchFailure(op, "dim must be constant");
if (!hasElementType<mlir::FloatType>(gradOutput) ||
!hasElementType<mlir::FloatType>(gradOutput) ||
(!weightIsNone && !hasElementType<mlir::FloatType>(weight))) {
return rewriter.notifyMatchFailure(
op, "`gradOutput`, 'weight', and `totalWeight` must be tensors of "
"type float");
}
if (!hasElementType<mlir::IntegerType>(target)) {
return rewriter.notifyMatchFailure(
op, "`target` must be a tensor of integer type");
}
auto outputSize = getTensorSizes(rewriter, loc, input);
Value gradInputTensor =
createZeroInitTensor(rewriter, loc, outputSize, resultElementType);
auto getAffineMapForSingleElementTensor = [&](Value tensor) {
auto tensorType = tensor.getType().cast<RankedTensorType>();
SmallVector<AffineExpr> affineExprs(tensorType.getRank(),
rewriter.getAffineConstantExpr(0));
return AffineMap::get(inputRank, /*symbolCount=*/0, affineExprs,
op->getContext());
};
AffineMap gradOutMap = AffineMap::get(inputRank, /*symbolCount=*/0,
rewriter.getAffineDimExpr(0));
if (reduction != torch_upstream::Reduction::None || inputRank == 1)
gradOutMap = getAffineMapForSingleElementTensor(gradOutput);
AffineMap targetMap = AffineMap::get(inputRank, /*symbolCount=*/0,
rewriter.getAffineDimExpr(0));
if (inputRank == 1)
targetMap = getAffineMapForSingleElementTensor(target);
AffineMap totalWeightMap = getAffineMapForSingleElementTensor(totalWeight);
AffineMap resultMap = rewriter.getMultiDimIdentityMap(inputRank);
SmallVector<AffineMap> indexingMaps{gradOutMap, targetMap, totalWeightMap,
resultMap};
SmallVector<utils::IteratorType> iteratorTypes(
inputRank, utils::IteratorType::parallel);
// The code generation is equivalent to the following pseudo-code:
//
// for batch_index in len(input.size(0)):
// for class_index in len(input.size(1)):
// target_elem = target[batch_index]
//
// if reduction == None:
// grad_out_elem = grad_output[batchIndex]
// else:
// grad_out_elem = grad_output[0]
//
// if reduction == Mean:
// total_weight_elem = total_weight[0]
// grad_out_elem /= total_weight_elem
//
// weight_elem = weight[target_elem] if weight != None else 1
//
// if target_elem != class_index or target_elem == ignore_index:
// grad_input_elem = -weight_elem * grad_out_elem
// else:
// grad_input_elem = 0
// grad_input[batch_index, target_elem] = grad_input_elem
//
// NOTE: In the case of not batch dimension, `batch_index` essentially
// becomes zero.
Value gradInput =
rewriter
.create<linalg::GenericOp>(
loc, gradInputTensor.getType(),
ValueRange{gradOutput, target, totalWeight}, gradInputTensor,
indexingMaps, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value gradOutElem = args[0];
Value targetElem = castIntToIndex(b, loc, args[1]);
Value totalWeightElem = args[2];
Value classIndex =
b.create<linalg::IndexOp>(loc, inputRank - 1);
if (reduction == torch_upstream::Reduction::Mean) {
gradOutElem = b.create<arith::DivFOp>(loc, gradOutElem,
totalWeightElem);
}
Value negGradOutElem =
b.create<arith::NegFOp>(loc, gradOutElem);
Value weightElem = getConstant(b, loc, 1, resultElementType);
if (!weightIsNone) {
weightElem =
b.create<tensor::ExtractOp>(loc, weight, targetElem);
}
Value weightedNegGradOutElem =
b.create<arith::MulFOp>(loc, weightElem, negGradOutElem);
Value targetNeqClassIndex = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ne, targetElem, classIndex);
Value targetEqIgnoreIndex = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, targetElem, ignoreIndex);
Value gradInputIsZero = b.create<arith::OrIOp>(
loc, targetNeqClassIndex, targetEqIgnoreIndex);
Value zero = getConstant(b, loc, 0, resultElementType);
Value gradInElem = b.create<arith::SelectOp>(
loc, gradInputIsZero, zero, weightedNegGradOutElem);
b.create<linalg::YieldOp>(loc, gradInElem);
})
->getResult(0);
RankedTensorType resultType = getTypeConverter()
->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, gradInput);
return success();
}
};
} // namespace
namespace {
class ConvertAtenDetachOp : public OpConversionPattern<AtenDetachOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenDetachOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Type resultType = getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, adaptor.getSelf());
return success();
}
};
} // namespace
namespace {
class ConvertTensorStaticInfoCastOp
: public OpConversionPattern<TensorStaticInfoCastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(TensorStaticInfoCastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
RankedTensorType resultType = getTypeConverter()
->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType,
adaptor.getOperand());
return success();
}
};
} // namespace
void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target) {
MLIRContext *context = patterns.getContext();
target.addIllegalOp<
AtenTanhOp, AtenReluOp, AtenGeluOp, AtenGeluBackwardOp, AtenAddTensorOp,
AtenMulTensorOp, AtenDivTensorOp, AtenDivTensorModeOp, AtenSubTensorOp,
AtenLerpTensorOp, AtenSigmoidOp, AtenMinimumOp, AtenAtan2Op,
AtenMaximumOp, AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
AtenErfOp, AtenSqrtOp, AtenFloorOp, AtenCeilOp, AtenPreluOp,
AtenPowTensorScalarOp, AtenPowTensorTensorOp, AtenLog2Op, AtenLog1pOp,
AtenRsqrtOp, AtenAbsOp, AtenReciprocalOp, AtenBitwiseAndTensorOp,
AtenBitwiseOrTensorOp, AtenBitwiseXorTensorOp, AtenGtScalarOp,
AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp, AtenLeScalarOp,
AtenWhereSelfOp, AtenGtTensorOp, AtenGeTensorOp, AtenEqTensorOp,
AtenLtTensorOp, AtenLeTensorOp, AtenThresholdOp, AtenThresholdBackwardOp,
AtenHardtanhBackwardOp, AtenCloneOp, AtenSinOp, AtenCosOp, AtenNeScalarOp,
AtenMaskedFillTensorOp, AtenLogicalOrOp, AtenLogicalAndOp, AtenAtanOp,
AtenLogicalXorOp, AtenLogicalNotOp, AtenTriuOp, AtenRemainderScalarOp,
AtenBitwiseNotOp, AtenRoundOp, AtenFillScalarOp, AtenFillTensorOp,
AtenRealOp, AtenImagOp>();
patterns.add<ConvertElementwiseOp>(typeConverter, context);
target.addIllegalOp<AtenNllLossForwardOp>();
patterns.add<ConvertAtenDetachOp>(typeConverter, context);
target.addIllegalOp<AtenDetachOp>();
patterns.add<ConvertAtenNllLossForwardOp>(typeConverter, context);
target.addIllegalOp<AtenBatchNormOp>();
patterns.add<ConvertAtenBatchNormOp>(typeConverter, context);
target.addIllegalOp<AtenNllLossBackwardOp>();
patterns.add<ConvertAtenNllLossBackwardOp>(typeConverter, context);
patterns.add<ConvertTensorStaticInfoCastOp>(typeConverter, context);
target.addIllegalOp<TensorStaticInfoCastOp>();
}