2020-09-29 03:02:35 +08:00
|
|
|
//===-------------------------------------------------------*- tablegen -*-===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#ifndef TORCH_OPS
|
|
|
|
#define TORCH_OPS
|
|
|
|
|
2021-01-28 08:35:44 +08:00
|
|
|
include "npcomp/Dialect/Torch/IR/TorchTypes.td"
|
2020-10-23 14:31:34 +08:00
|
|
|
include "npcomp/Dialect/Torch/IR/OpInterfaces.td"
|
2021-01-28 08:35:44 +08:00
|
|
|
include "mlir/IR/SymbolInterfaces.td"
|
2021-03-02 07:00:32 +08:00
|
|
|
include "mlir/Interfaces/ControlFlowInterfaces.td"
|
2021-03-02 09:24:15 +08:00
|
|
|
include "mlir/Interfaces/SideEffectInterfaces.td"
|
2020-09-29 03:02:35 +08:00
|
|
|
|
|
|
|
class Torch_Op<string mnemonic, list<OpTrait> traits = []>
|
|
|
|
: Op<Torch_Dialect, mnemonic, traits> {
|
|
|
|
}
|
|
|
|
|
2020-10-23 14:31:34 +08:00
|
|
|
// TODO: Add alias mapping from the signature and use it to implement the
|
|
|
|
// effects interface (since whether the kernel_call has side effects is
|
|
|
|
// dependent on its metadata).
|
|
|
|
def Torch_KernelCallOp : Torch_Op<"kernel_call", [
|
|
|
|
DeclareOpInterfaceMethods<TorchKernelOpInterface>]> {
|
2020-09-30 05:17:34 +08:00
|
|
|
let summary = "Calls a Torch custom kernel";
|
|
|
|
let description = [{
|
|
|
|
Torch kernel calls are matched by the runtime based on signature, including
|
|
|
|
the fully qualified kernel name (i.e. "namespace::name") and the tuple of
|
|
|
|
argument types. This op models such an invocation.
|
|
|
|
}];
|
|
|
|
|
|
|
|
let arguments = (ins
|
2020-10-23 14:31:34 +08:00
|
|
|
StrAttr:$kernelName,
|
|
|
|
Variadic<AnyTorchType>:$args,
|
|
|
|
StrArrayAttr:$sigArgTypes,
|
|
|
|
StrArrayAttr:$sigRetTypes,
|
|
|
|
BoolAttr:$sigIsVararg,
|
|
|
|
BoolAttr:$sigIsVarret,
|
|
|
|
BoolAttr:$sigIsMutable
|
|
|
|
// TODO: Add alias mapping.
|
2020-09-30 05:17:34 +08:00
|
|
|
);
|
|
|
|
let results = (outs
|
|
|
|
Variadic<AnyTorchType>:$results
|
|
|
|
);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
2020-10-23 14:31:34 +08:00
|
|
|
$kernelName $args `:` functional-type($args, results) attr-dict
|
2020-09-30 05:17:34 +08:00
|
|
|
}];
|
2020-09-29 03:02:35 +08:00
|
|
|
}
|
|
|
|
|
2021-01-28 08:35:44 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2021-02-18 03:28:51 +08:00
|
|
|
// TorchScript `torch.nn.Module` object instantiation ops.
|
2021-01-28 08:35:44 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
def Torch_NnModuleOp : Torch_Op<"nn_module", [
|
2021-02-18 03:28:51 +08:00
|
|
|
DeclareOpInterfaceMethods<SymbolUserOpInterface>,
|
2021-01-28 08:35:44 +08:00
|
|
|
SingleBlockImplicitTerminator<"::mlir::NPCOMP::Torch::NnModuleTerminatorOp">]> {
|
|
|
|
let summary = "Constructs a torch.nn.Module";
|
|
|
|
let description = [{
|
|
|
|
This op is used to represent a torch.nn.Module when importing a
|
|
|
|
graph of Python objects.
|
|
|
|
|
|
|
|
This op returns a new torch.nn.Module as an SSA value, with a set of
|
|
|
|
declaratively specified properties.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
```mlir
|
2021-02-18 03:28:51 +08:00
|
|
|
%2 = torch.nn_module {
|
|
|
|
torch.slot "b", %bool_true : !basicpy.BoolType
|
|
|
|
torch.slot "i", %num3_i64 : i64
|
|
|
|
torch.slot "f", %num : f64
|
|
|
|
torch.slot "t", %0 : !numpy.ndarray<*:!numpy.any_dtype>
|
|
|
|
torch.slot "submodule", %1 : !torch.nn.Module
|
|
|
|
} : !torch.nn.Module<"my_class_name">
|
2021-01-28 08:35:44 +08:00
|
|
|
```
|
2021-02-18 03:28:51 +08:00
|
|
|
|
|
|
|
This op is tightly coupled to the `torch.class_type` op named in the
|
|
|
|
`!torch.nn.Module<"my_class_name">` type. Each slot must match precisely
|
|
|
|
with the corresponding `torch.attr` in the `torch.class_type`.
|
|
|
|
See the documentation for `torch.class_type` for information.
|
2021-01-28 08:35:44 +08:00
|
|
|
}];
|
|
|
|
|
|
|
|
let arguments = (ins);
|
|
|
|
let results = (outs Torch_NnModuleType:$result);
|
|
|
|
let regions = (region SizedRegion<1>:$region);
|
|
|
|
let verifier = "return ::verify(*this);";
|
|
|
|
|
2021-02-18 03:28:51 +08:00
|
|
|
let assemblyFormat = "$region attr-dict `:` type($result)";
|
|
|
|
|
|
|
|
let extraClassDeclaration = [{
|
|
|
|
StringRef getClassName() { return getType().getClassName(); }
|
Support multiple instances of a class in GlobalizeObjectGraph.
This happens in practice with e.g. ResNet from torchvision (multiple
instances of the same BatchNorm class).
The key observation is that for this program, and the expected set of
programs, we can convert the program to the same globalized form with a
bit more static analysis and effort to suitably monomorphize the
program. Though what we are doing here is fairly annoying to implement,
it saves any nontrivial later pass from having to do similar analyses
(or worse). E.g. shape inference would need to be object-graph aware,
mutation/lifetime analyses would have to be aware, etc. Additionally, it
would make us front-load what it means to have a !torch.nn.Module type
on an ABI boundary, which we are just not ready to handle.
I'm really, really hoping that in practice we can get away with
this, otherwise it's going to be really rough designing a representation
(and implementing everything to back it) that is convenient to transform
and gracefully scales from full object graph (in the most dynamic case)
down to a fixed set of global slots like we have here (in the most
static case, which we presume a lot of practical programs fall into).
This also involved introducing a
`torch-prepare-for-globalize-object-graph` pass that does a minimal set of
lowerings to simplify the IR into a more orthogonal and analyzable form,
and a `torch-globalize-pipeline` helper.
Recommended review order:
- updated documentation in Passes.td
- new tests in `globalize-object-graph-multiple-instances*.mlir`
- implementation of GlobalizeObjectGraph.cpp
- PrepareForGlobalizeObjectGraph.cpp + prepare-for-globalize-object-graph.mlir
- misc stuff like torch-globalize-pipeline pipeline definition.
With this, we can import, globalize, and inline resnet18 from
torchvision:
https://gist.github.com/silvasean/821586afc19b67d9fb72030b2e0adeb8
2021-03-10 12:33:21 +08:00
|
|
|
ClassTypeOp getClassType(::mlir::SymbolTable &symbolTable) {
|
|
|
|
return symbolTable.lookup<ClassTypeOp>(getClassName());
|
|
|
|
}
|
2021-02-18 03:28:51 +08:00
|
|
|
}];
|
2021-01-28 08:35:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_NnModuleTerminatorOp : Torch_Op<"nn_module_terminator", [Terminator,
|
|
|
|
HasParent<"::mlir::NPCOMP::Torch::NnModuleOp">]> {
|
|
|
|
let summary = "Implicit terminator for torch.nn_module";
|
|
|
|
|
|
|
|
let arguments = (ins);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = "attr-dict";
|
|
|
|
}
|
|
|
|
|
2021-02-18 03:28:51 +08:00
|
|
|
def Torch_SlotOp : Torch_Op<"slot", [
|
2021-01-28 08:35:44 +08:00
|
|
|
HasParent<"::mlir::NPCOMP::Torch::NnModuleOp">]> {
|
2021-02-18 03:28:51 +08:00
|
|
|
let summary = "Define the value of a slot of a torch.nn.Module";
|
2021-01-28 08:35:44 +08:00
|
|
|
let description = [{
|
2021-02-18 03:28:51 +08:00
|
|
|
This op specifies that the initial value of the slot `name` of the
|
|
|
|
parent torch.nn_module should be `value`, which is allowed to be an
|
|
|
|
arbitrary Torch-compatible SSA value, including other !torch.nn.Module's.
|
2021-01-28 08:35:44 +08:00
|
|
|
}];
|
|
|
|
|
|
|
|
let arguments = (ins StrAttr:$name, AnyTorchType:$value);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$name `,` $value attr-dict `:` type($value)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-02-18 03:28:51 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Modeling of TorchScript class types
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
def Torch_ClassTypeOp : Torch_Op<"class_type", [
|
|
|
|
Symbol,
|
|
|
|
SingleBlockImplicitTerminator<"::mlir::NPCOMP::Torch::ClassTypeTerminatorOp">]> {
|
|
|
|
let summary = "Constructs a torch.ClassType";
|
|
|
|
let description = [{
|
|
|
|
Declares a class type. Class types are the types used to describe
|
|
|
|
TorchScript `torch.nn.Module`'s. The terminology "class type" is for
|
|
|
|
consistency with TorchScript (a better name in our context might be
|
|
|
|
"nn module subtype"). The `syn_name` of this op is the same string
|
|
|
|
as in the `!torch.nn.Module<"...">` type.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
```mlir
|
|
|
|
// A simple empty torch.class_type, with corresponding torch.nn_module.
|
|
|
|
torch.class_type @empty {}
|
|
|
|
%submodule = torch.nn_module {} : !torch.nn.Module<"empty">
|
|
|
|
|
|
|
|
// A class type with many members.
|
|
|
|
torch.class_type @test {
|
|
|
|
torch.attr "b" : !basicpy.BoolType
|
|
|
|
torch.attr "i" : i64
|
|
|
|
torch.attr "f" : f64
|
|
|
|
torch.attr "t" : !numpy.ndarray<*:!numpy.any_dtype>
|
|
|
|
torch.attr "submodule" : !torch.nn.Module<"empty">
|
|
|
|
torch.method "method", @f
|
|
|
|
}
|
|
|
|
torch.nn_module {
|
|
|
|
// These must match the order and names in the `torch.class_type`.
|
|
|
|
torch.slot "b", %bool_true : !basicpy.BoolType
|
|
|
|
torch.slot "i", %num3_i64 : i64
|
|
|
|
torch.slot "f", %num : f64
|
|
|
|
torch.slot "t", %array : !numpy.ndarray<*:!numpy.any_dtype>
|
|
|
|
torch.slot "submodule", %submodule : !torch.nn.Module<"empty">
|
|
|
|
} : !torch.nn.Module<"test">
|
|
|
|
```
|
|
|
|
}];
|
|
|
|
|
|
|
|
let arguments = (ins SymbolNameAttr:$sym_name);
|
|
|
|
let results = (outs);
|
|
|
|
let regions = (region SizedRegion<1>:$region);
|
|
|
|
let verifier = "return ::verify(*this);";
|
|
|
|
|
|
|
|
let assemblyFormat = "$sym_name $region attr-dict";
|
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_ClassTypeTerminatorOp : Torch_Op<"class_type_terminator", [Terminator,
|
|
|
|
HasParent<"::mlir::NPCOMP::Torch::ClassTypeOp">]> {
|
|
|
|
let summary = "Implicit terminator for torch.class_type";
|
|
|
|
|
|
|
|
let arguments = (ins);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = "attr-dict";
|
|
|
|
}
|
|
|
|
|
2021-01-28 08:35:44 +08:00
|
|
|
def Torch_MethodOp : Torch_Op<"method", [
|
2021-02-18 03:28:51 +08:00
|
|
|
HasParent<"::mlir::NPCOMP::Torch::ClassTypeOp">,
|
2021-01-28 08:35:44 +08:00
|
|
|
DeclareOpInterfaceMethods<SymbolUserOpInterface>
|
|
|
|
]> {
|
2021-02-18 03:28:51 +08:00
|
|
|
let summary = "Declare a method of a torch.class_type";
|
2021-01-28 08:35:44 +08:00
|
|
|
let description = [{
|
2021-02-18 03:28:51 +08:00
|
|
|
This op declaratively specifies that the parent torch.class_type has a
|
2021-01-28 08:35:44 +08:00
|
|
|
method `name` which calls `function`. `function` is an unbound function.
|
|
|
|
That is, it explicitly takes the torch.nn.Module as a parameter (no implicit
|
|
|
|
"self" object).
|
2021-02-20 08:21:21 +08:00
|
|
|
|
|
|
|
If `private` is present, it indicates that external calls cannot be made
|
|
|
|
to this method.
|
2021-01-28 08:35:44 +08:00
|
|
|
}];
|
|
|
|
|
2021-02-20 08:21:21 +08:00
|
|
|
// We don't use sym_visibility because that only applies to Symbol's, and
|
|
|
|
// some of the related concepts like "nested" visibility are specific to
|
|
|
|
// symbols.
|
|
|
|
let arguments = (ins
|
|
|
|
StrAttr:$name,
|
|
|
|
FlatSymbolRefAttr:$function,
|
|
|
|
// `private` is a C++ keyword, so use `isPrivate`.
|
|
|
|
UnitAttr:$isPrivate
|
|
|
|
);
|
2021-01-28 08:35:44 +08:00
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
2021-02-20 08:21:21 +08:00
|
|
|
(`private` $isPrivate^)? $name `,` $function attr-dict
|
2021-01-28 08:35:44 +08:00
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-02-18 03:28:51 +08:00
|
|
|
def Torch_AttrOp : Torch_Op<"attr", [
|
|
|
|
HasParent<"::mlir::NPCOMP::Torch::ClassTypeOp">
|
|
|
|
]> {
|
|
|
|
let summary = "Declare an attribute of a torch.class_type";
|
|
|
|
let description = [{
|
|
|
|
This op declaratively specifies that torch.nn.Module's of the parent
|
|
|
|
torch.class_type must have an attribute `name` of type `type`.
|
2021-02-20 08:21:21 +08:00
|
|
|
|
|
|
|
If `private` is present, it indicates that the value of this attribute
|
|
|
|
cannot be accessed externally.
|
2021-02-18 03:28:51 +08:00
|
|
|
}];
|
|
|
|
|
2021-02-20 08:21:21 +08:00
|
|
|
// We don't use sym_visibility because that only applies to Symbol's, and
|
|
|
|
// some of the related concepts like "nested" visibility are specific to
|
|
|
|
// symbols.
|
|
|
|
let arguments = (ins
|
|
|
|
StrAttr:$name,
|
|
|
|
TypeAttr:$type,
|
|
|
|
// `private` is a C++ keyword, so use `isPrivate`
|
|
|
|
UnitAttr:$isPrivate
|
|
|
|
);
|
2021-02-18 03:28:51 +08:00
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
2021-02-20 08:21:21 +08:00
|
|
|
(`private` $isPrivate^)? $name `:` $type attr-dict
|
2021-02-18 03:28:51 +08:00
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Global slot ops
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TODO: Should these be in a separate dialect?
|
|
|
|
// At this point, they are fairly specific to torch types, but their get/set
|
|
|
|
// semantics follow Python.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
def Torch_GlobalSlotOp : Torch_Op<"global_slot", [
|
|
|
|
Symbol,
|
|
|
|
IsolatedFromAbove,
|
2021-02-26 07:54:51 +08:00
|
|
|
SingleBlockImplicitTerminator<"::mlir::NPCOMP::Torch::GlobalSlotInitOp">
|
2021-02-18 03:28:51 +08:00
|
|
|
]> {
|
|
|
|
let summary = "A slot with global storage";
|
|
|
|
let description = [{
|
|
|
|
Represents a slot with global storage. The slot semantics are the same
|
|
|
|
as Python's: getting or setting a slot is done by object identity.
|
2021-02-20 08:21:21 +08:00
|
|
|
|
|
|
|
The `typeBound` is a type that the contained type is a subtype of.
|
2021-02-18 03:28:51 +08:00
|
|
|
}];
|
|
|
|
|
2021-02-20 08:21:21 +08:00
|
|
|
let arguments = (ins
|
|
|
|
SymbolNameAttr:$sym_name,
|
|
|
|
OptionalAttr<StrAttr>:$sym_visibility,
|
|
|
|
TypeAttr:$typeBound
|
|
|
|
);
|
2021-02-18 03:28:51 +08:00
|
|
|
let results = (outs);
|
2021-02-26 07:54:51 +08:00
|
|
|
let regions = (region SizedRegion<1>:$initializer);
|
2021-02-18 03:28:51 +08:00
|
|
|
|
|
|
|
let assemblyFormat = [{
|
2021-02-26 07:54:51 +08:00
|
|
|
($sym_visibility^)? $sym_name attr-dict `:` $typeBound ($initializer^)?
|
2021-02-18 03:28:51 +08:00
|
|
|
}];
|
2021-02-26 07:54:51 +08:00
|
|
|
}
|
2021-02-18 03:28:51 +08:00
|
|
|
|
2021-02-26 07:54:51 +08:00
|
|
|
def Torch_GlobalSlotInitOp : Torch_Op<"global_slot.init", [
|
|
|
|
Terminator,
|
|
|
|
HasParent<"::mlir::NPCOMP::Torch::GlobalSlotOp">]> {
|
|
|
|
let summary = "yield-like terminator for torch.global_slot initializer region";
|
|
|
|
let description = [{
|
|
|
|
The operand to this op becomes the initial value of the parent
|
|
|
|
torch.global_slot.
|
2021-02-18 03:28:51 +08:00
|
|
|
}];
|
2021-02-26 07:54:51 +08:00
|
|
|
|
|
|
|
let arguments = (ins AnyTorchType:$initialValue);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
// This bulider creates an illegal op, but is needed to appease
|
|
|
|
// ensureTerminator in the default builders for SingleBlockImplicitTerminator
|
|
|
|
// on the parent torch.global_slot op.
|
|
|
|
// TODO: Have a SingleBlockExplicitTerminator trait.
|
2021-03-09 21:58:03 +08:00
|
|
|
let builders = [OpBuilder<(ins), [{ /*nothing to do */ }]>];
|
2021-02-26 07:54:51 +08:00
|
|
|
|
|
|
|
let assemblyFormat = "$initialValue attr-dict `:` type($initialValue)";
|
2021-02-18 03:28:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_GlobalSlotGetOp : Torch_Op<"global_slot.get", []> {
|
|
|
|
let summary = "Get the value stored in a torch.global_slot";
|
|
|
|
|
|
|
|
let arguments = (ins
|
|
|
|
FlatSymbolRefAttr:$slot
|
|
|
|
);
|
|
|
|
let results = (outs AnyTorchType:$result);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$slot attr-dict `:` type($result)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_GlobalSlotSetOp : Torch_Op<"global_slot.set", []> {
|
|
|
|
let summary = "Set the value stored in a torch.global_slot";
|
|
|
|
|
|
|
|
let arguments = (ins
|
|
|
|
FlatSymbolRefAttr:$slot,
|
|
|
|
AnyTorchType:$value
|
|
|
|
);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$slot `=` $value attr-dict `:` type($value)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-02-02 09:59:42 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TorchScript `prim::` ops.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
def Torch_PrimGetAttrOp : Torch_Op<"prim.GetAttr", []> {
|
|
|
|
let summary = "TorchScript prim::GetAttr op";
|
|
|
|
|
|
|
|
let arguments = (ins StrAttr:$name, Torch_NnModuleType:$receiver);
|
|
|
|
let results = (outs AnyTorchType:$result);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
2021-02-18 03:28:51 +08:00
|
|
|
$receiver `[` $name `]` attr-dict `:` type($receiver) `->` type($result)
|
2021-02-02 09:59:42 +08:00
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_PrimSetAttrOp : Torch_Op<"prim.SetAttr", []> {
|
|
|
|
let summary = "TorchScript prim::SetAttr op";
|
|
|
|
|
|
|
|
let arguments = (ins
|
|
|
|
StrAttr:$name,
|
|
|
|
Torch_NnModuleType:$receiver,
|
|
|
|
AnyTorchType:$value
|
|
|
|
);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
2021-02-18 03:28:51 +08:00
|
|
|
$receiver `[` $name `]` `=` $value attr-dict `:` type($receiver) `,` type($value)
|
2021-02-02 09:59:42 +08:00
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_PrimCallMethodOp : Torch_Op<"prim.CallMethod", []> {
|
|
|
|
let summary = "TorchScript prim::CallMethod op";
|
|
|
|
|
2021-02-06 06:54:04 +08:00
|
|
|
let arguments = (ins
|
|
|
|
StrAttr:$name,
|
|
|
|
Torch_NnModuleType:$receiver,
|
|
|
|
Variadic<AnyTorchType>:$operands
|
|
|
|
);
|
2021-02-02 09:59:42 +08:00
|
|
|
let results = (outs AnyTorchType:$result);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
2021-02-18 03:28:51 +08:00
|
|
|
$receiver `[` $name `]` `(` $operands `)` attr-dict `:` type($receiver) `,` functional-type($operands, $result)
|
2021-02-06 06:54:04 +08:00
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-03-02 05:47:50 +08:00
|
|
|
def Torch_PrimPrintOp : Torch_Op<"prim.Print", []> {
|
2021-02-06 06:54:04 +08:00
|
|
|
let summary = "TorchScript prim::Print op";
|
|
|
|
|
|
|
|
let arguments = (ins Variadic<AnyTorchType>:$operands);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
`(` $operands `)` attr-dict `:` type($operands)
|
2021-02-02 09:59:42 +08:00
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-03-02 07:00:32 +08:00
|
|
|
def Torch_PrimLoopOp : Torch_Op<"prim.Loop", [
|
|
|
|
DeclareOpInterfaceMethods<RegionBranchOpInterface, ["getSuccessorEntryOperands"]>]> {
|
|
|
|
let summary = "TorchScript prim::Loop op";
|
|
|
|
let description = [{
|
|
|
|
This op (together with prim.Loop.condition) define a looping construct
|
|
|
|
that combines `for` and `while` behavior.
|
|
|
|
|
|
|
|
See: https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/OVERVIEW.md#loops
|
|
|
|
}];
|
|
|
|
|
|
|
|
let arguments = (ins
|
|
|
|
I64:$maxTripCount,
|
|
|
|
Basicpy_BoolType:$initialCondition,
|
|
|
|
Variadic<AnyTorchType>:$iterArgsInit
|
|
|
|
);
|
|
|
|
let results = (outs Variadic<AnyTorchType>:$results);
|
|
|
|
let regions = (region SizedRegion<1>:$region);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$maxTripCount `,` $initialCondition `,` `init` `(` $iterArgsInit `)` $region
|
|
|
|
attr-dict `:` functional-type(operands, results)
|
|
|
|
}];
|
|
|
|
let verifier = [{ return RegionBranchOpInterface::verifyTypes(*this); }];
|
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_PrimLoopConditionOp : Torch_Op<"prim.Loop.condition", [
|
|
|
|
Terminator,
|
|
|
|
HasParent<"::mlir::NPCOMP::Torch::PrimLoopOp">]> {
|
|
|
|
let summary = "yield-like terminator for torch.prim.Loop";
|
|
|
|
let description = [{
|
|
|
|
Does not correspond to any torch prim op directly (the way that they model
|
|
|
|
blocks has a built-in notion of yield-like terminator).
|
|
|
|
}];
|
|
|
|
|
|
|
|
let arguments = (ins Basicpy_BoolType:$shouldContinue, Variadic<AnyTorchType>:$iterArgs);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$shouldContinue `iter` `(` $iterArgs `)`
|
|
|
|
attr-dict `:` type($shouldContinue) `,` `(` type($iterArgs) `)`
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-02-26 08:35:29 +08:00
|
|
|
def Torch_PrimNumToTensorOp : Torch_Op<"prim.NumToTensor", []> {
|
|
|
|
let summary = "TorchScript prim::NumToTensor op";
|
|
|
|
|
|
|
|
let arguments = (ins AnyTorchNumberType:$num);
|
|
|
|
let results = (outs AnyTorchTensorType:$result);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$num attr-dict `:` type($num) `->` type($result)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-03-02 05:47:50 +08:00
|
|
|
def Torch_PrimRaiseExceptionOp : Torch_Op<"prim.RaiseException", []> {
|
|
|
|
let summary = "TorchScript prim::RaiseException op";
|
|
|
|
|
|
|
|
// TODO: Error messages suggest that any exception derived from BaseException
|
|
|
|
// is allowed at the Python level, but they seem to just be strings at the
|
|
|
|
// IR level.
|
|
|
|
let arguments = (ins Basicpy_BytesType:$errorMsg);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$errorMsg attr-dict
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_PrimUninitializedOp : Torch_Op<"prim.Uninitialized", []> {
|
|
|
|
let summary = "TorchScript prim::Uninitialized op";
|
|
|
|
|
|
|
|
let arguments = (ins);
|
|
|
|
let results = (outs AnyTorchType:$result);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
attr-dict `:` type($result)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-03-02 09:24:15 +08:00
|
|
|
def Torch_Primunchecked_castOp : Torch_Op<"prim.unchecked_cast", [
|
|
|
|
NoSideEffect
|
|
|
|
]> {
|
2021-03-02 07:26:57 +08:00
|
|
|
let summary = "TorchScript prim::unchecked_cast op";
|
2021-03-02 09:24:15 +08:00
|
|
|
let description = [{
|
|
|
|
Refine a type to one of its subtypes.
|
|
|
|
|
|
|
|
For example, refine a type that was only statically known to be
|
|
|
|
Optional[T] to a T when we obtain static information that guarantees it.
|
|
|
|
|
|
|
|
The key observation here is that Optional[T] does not have a corresponding
|
|
|
|
runtime type (i.e. `c10::IValue` subclass). It represents a set of possible
|
|
|
|
concrete types which for `Optional[T]` is either `None` or a concrete
|
|
|
|
subtype of `T` (which in the simplest case is just `T`). In particular,
|
|
|
|
at runtime there is no way to distinguish `Optional[int]` from
|
|
|
|
`Optional[Optional[int]]`, because both are either `None` or `int`.
|
|
|
|
This differs from C++ std::optional.
|
|
|
|
|
|
|
|
The best documentation of this op is inspection of the code in
|
|
|
|
`torch/csrc/jit/frontend/ir_emitter.cpp`.
|
|
|
|
}];
|
|
|
|
|
|
|
|
// TODO: When we model PyTorch's notion of subtyping, verify the types here.
|
|
|
|
let arguments = (ins AnyTorchType:$operand);
|
|
|
|
let results = (outs AnyTorchType:$result);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$operand attr-dict `:` type($operand) `->` type($result)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Additional ops used to model TorchScript's Graph's / Node's.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
def Torch_DerefineOp : Torch_Op<"derefine", [
|
|
|
|
NoSideEffect
|
|
|
|
]> {
|
|
|
|
let summary = "De-refine a type";
|
|
|
|
let description = [{
|
|
|
|
In terms of IR structure, TorchScript allows types to vary in many
|
|
|
|
circumstances where MLIR requires pointer-identical types. In particular,
|
|
|
|
it is valid to pass any subtype in place of a type. For example, if an
|
|
|
|
`Optional[int]` is required somewhere in the IR, it is legal to pass a
|
|
|
|
value of just `int` (but not the other way around; see
|
|
|
|
`torch.prim.unchecked_cast`). In effect, every *use* can have a different
|
|
|
|
type.
|
|
|
|
|
|
|
|
This op bridges that impedance mismatch. This op allows casting a value
|
|
|
|
from one type to a type that it is a subtype of to model this behavior.
|
|
|
|
}];
|
|
|
|
|
|
|
|
// TODO: When we model PyTorch's notion of subtyping, verify the types here.
|
2021-03-02 07:26:57 +08:00
|
|
|
let arguments = (ins AnyTorchType:$operand);
|
|
|
|
let results = (outs AnyTorchType:$result);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$operand attr-dict `:` type($operand) `->` type($result)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-03-03 06:39:48 +08:00
|
|
|
def Torch_PrimListUnpackOp: Torch_Op<"prim.ListUnpack", []> {
|
|
|
|
let summary = "TorchScript prim::ListUnpack op";
|
|
|
|
|
|
|
|
let arguments = (ins AnyTorchType:$operand);
|
|
|
|
let results = (outs Variadic<AnyTorchType>:$results);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$operand attr-dict `:` type($operand) `->` type($results)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_PrimTupleUnpackOp: Torch_Op<"prim.TupleUnpack", []> {
|
|
|
|
let summary = "TorchScript prim::TupleUnpack op";
|
|
|
|
|
|
|
|
let arguments = (ins AnyTorchType:$operand);
|
|
|
|
let results = (outs Variadic<AnyTorchType>:$results);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$operand attr-dict `:` type($operand) `->` type($results)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-03-03 07:26:03 +08:00
|
|
|
def Torch_PrimTupleIndexOp : Torch_Op<"prim.TupleIndex", []> {
|
|
|
|
let summary = "TorchScript prim::TupleIndex op";
|
|
|
|
let arguments = (ins
|
|
|
|
AnyTorchType:$operand,
|
|
|
|
AnyTorchNumberType:$idx);
|
|
|
|
let results = (outs AnyTorchType:$result);
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$operand `,` $idx attr-dict `:` type($operand) `,` type($idx) `->` type($result)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-03-11 08:41:18 +08:00
|
|
|
def Torch_PrimdtypeOp : Torch_Op<"prim.dtype", []> {
|
|
|
|
let summary = "TorchScript prim::dtype op";
|
|
|
|
let arguments = (ins AnyTorchTensorType:$tensor);
|
|
|
|
let results = (outs AnyTorchNumberType:$result);
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$tensor attr-dict `:` type($tensor) `->` type($result)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2021-03-11 09:25:39 +08:00
|
|
|
def Torch_PrimdeviceOp : Torch_Op<"prim.device", []> {
|
|
|
|
let summary = "TorchScript prim::device op";
|
|
|
|
let arguments = (ins AnyTorchTensorType:$tensor);
|
|
|
|
let results = (outs Torch_DeviceType:$result);
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$tensor attr-dict `:` type($tensor) `->` type($result)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2020-09-29 03:02:35 +08:00
|
|
|
#endif // TORCH_OPS
|