mirror of https://github.com/llvm/torch-mlir
[Linalg] Bring back onnx AveragePool padding asymmetric support
parent
ae6f5e8251
commit
2f2dfb7e44
|
@ -441,17 +441,9 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
|
|||
cstKernel.push_back(rewriter.create<Torch::ConstantIntOp>(
|
||||
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
||||
}
|
||||
// Onnx pads format: [x1_begin, x2_begin…x1_end, x2_end,…]
|
||||
// Pytorch pads format: [x1, x2,...] or [x], assume begin==end for all
|
||||
// axes x.
|
||||
int64_t paddingSizeHalf = padding.size() / 2;
|
||||
for (int64_t i = 0; i < paddingSizeHalf; ++i) {
|
||||
// Check if onnx padding attribute is symmetric.
|
||||
if (padding[i] != padding[i + paddingSizeHalf])
|
||||
return rewriter.notifyMatchFailure(
|
||||
binder.op, "onnx padding attribute is not symmetric");
|
||||
for (int64_t i : padding) {
|
||||
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
|
||||
binder.getLoc(), rewriter.getI64IntegerAttr(padding[i])));
|
||||
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
||||
}
|
||||
for (int64_t i : strides) {
|
||||
cstStrides.push_back(rewriter.create<Torch::ConstantIntOp>(
|
||||
|
|
|
@ -641,7 +641,7 @@ public:
|
|||
// Case1: AtenAvgPool1d/2dOp with countIncludePad=false support.
|
||||
if constexpr (std::is_same<OpTy, AtenAvgPool2dOp>()) {
|
||||
auto selfType = cast<RankedTensorType>(self.getType());
|
||||
const int64_t selfRank = selfType.getRank();
|
||||
unsigned selfRank = selfType.getRank();
|
||||
int64_t wDim = toPositiveDim(-1, selfRank);
|
||||
int64_t hDim = toPositiveDim(-2, selfRank);
|
||||
Value inputHeight = getDimOp(rewriter, loc, self, hDim);
|
||||
|
@ -657,6 +657,12 @@ public:
|
|||
/*indexingMaps=*/indexingMapsAvg,
|
||||
/*iteratorTypes=*/iteratorTypesAvg,
|
||||
[&](OpBuilder &b, Location loc, ValueRange args) {
|
||||
if (!isa<Torch::NoneType>(
|
||||
op.getDivisorOverride().getType())) {
|
||||
// AtenAvgPool2/3dOp has an optional divisor_override
|
||||
// attribute while AtenAvgPool1dOp does not.
|
||||
divisor = adaptor.getDivisorOverride();
|
||||
} else {
|
||||
// The algorithm for computing the divisor with
|
||||
// count_include_pad is manily based on pytorch
|
||||
// implementation. The following code is comment
|
||||
|
@ -683,6 +689,15 @@ public:
|
|||
loc, rewriter.getI64IntegerAttr(paddingInts[1]));
|
||||
Value owDW = b.create<arith::MulIOp>(loc, ow, dW);
|
||||
Value iw0 = b.create<arith::SubIOp>(loc, owDW, padW);
|
||||
// onnx average pool may pass asymmetric padding,
|
||||
// so modify the padding values to now represent high
|
||||
// padding.
|
||||
if (paddingInts.size() == 2 * (selfRank - 2)) {
|
||||
padH = rewriter.create<arith::ConstantOp>(
|
||||
loc, rewriter.getI64IntegerAttr(paddingInts[2]));
|
||||
padW = rewriter.create<arith::ConstantOp>(
|
||||
loc, rewriter.getI64IntegerAttr(paddingInts[3]));
|
||||
}
|
||||
// int64_t ih1 = std::min(ih0 + kH, input_height + padH);
|
||||
Value ih = castIndexToInt64(b, loc, inputHeight);
|
||||
Value ih0KH = b.create<arith::AddIOp>(
|
||||
|
@ -725,18 +740,13 @@ public:
|
|||
divisor = convertScalarToDtype(b, loc, poolSize,
|
||||
resultElementType);
|
||||
} else {
|
||||
Value ih1_ih0 =
|
||||
b.create<arith::SubIOp>(loc, ih1Clamped, ih0Clamped);
|
||||
Value iw1_iw0 =
|
||||
b.create<arith::SubIOp>(loc, iw1Clamped, iw0Clamped);
|
||||
divisor = b.create<arith::MulIOp>(loc, ih1_ih0, iw1_iw0);
|
||||
Value ih1_ih0 = b.create<arith::SubIOp>(loc, ih1Clamped,
|
||||
ih0Clamped);
|
||||
Value iw1_iw0 = b.create<arith::SubIOp>(loc, iw1Clamped,
|
||||
iw0Clamped);
|
||||
divisor =
|
||||
b.create<arith::MulIOp>(loc, ih1_ih0, iw1_iw0);
|
||||
}
|
||||
// AtenAvgPool2/3dOp has an optional divisor_override
|
||||
// attribute while AtenAvgPool1dOp does not.
|
||||
if constexpr (std::is_same<OpTy, AtenAvgPool2dOp>()) {
|
||||
if (!isa<Torch::NoneType>(
|
||||
op.getDivisorOverride().getType()))
|
||||
divisor = adaptor.getDivisorOverride();
|
||||
}
|
||||
|
||||
divisor = convertScalarToDtype(b, loc, divisor,
|
||||
|
|
Loading…
Reference in New Issue