mirror of https://github.com/llvm/torch-mlir
[Stablehlo] support aten.isfinite (#3850)
parent
dda65b196d
commit
7058f456b8
|
@ -4976,6 +4976,29 @@ def Torch_AtenFakeQuantizePerChannelAffineCachemaskOp : Torch_Op<"aten.fake_quan
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenIsfiniteOp : Torch_Op<"aten.isfinite", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics,
|
||||||
|
ReadOnly
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::isfinite : (Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchOptionalTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenIsfiniteOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||||
|
}
|
||||||
|
void AtenIsfiniteOp::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 1, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_AtenMaximumOp : Torch_Op<"aten.maximum", [
|
def Torch_AtenMaximumOp : Torch_Op<"aten.maximum", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics,
|
HasValueSemantics,
|
||||||
|
|
|
@ -2075,6 +2075,30 @@ LogicalResult ConvertAtenOp<AtenTrilOp>::matchAndRewrite(
|
||||||
return success();
|
return success();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
LogicalResult ConvertAtenOp<AtenIsfiniteOp>::matchAndRewrite(
|
||||||
|
AtenIsfiniteOp op, OpAdaptor adaptor,
|
||||||
|
ConversionPatternRewriter &rewriter) const {
|
||||||
|
Value self = adaptor.getSelf();
|
||||||
|
auto selfTy = cast<RankedTensorType>(self.getType());
|
||||||
|
if (!selfTy)
|
||||||
|
return rewriter.notifyMatchFailure(
|
||||||
|
op, "Only Tensor types are currently supported");
|
||||||
|
|
||||||
|
auto outType =
|
||||||
|
dyn_cast<RankedTensorType>(getTypeConverter()->convertType(op.getType()));
|
||||||
|
Type outElemTy = outType.getElementType();
|
||||||
|
if (!outElemTy.isInteger(1)) {
|
||||||
|
return rewriter.notifyMatchFailure(
|
||||||
|
op, "Only i1 output element type is supported");
|
||||||
|
}
|
||||||
|
|
||||||
|
rewriter.replaceOpWithNewOp<stablehlo::IsFiniteOp>(op.getOperation(), outType,
|
||||||
|
self);
|
||||||
|
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
|
||||||
void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
|
void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
|
||||||
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
||||||
ConversionTarget &target, const TorchToStablehloOptions &options) {
|
ConversionTarget &target, const TorchToStablehloOptions &options) {
|
||||||
|
@ -2248,6 +2272,7 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
|
||||||
INSERT_ATENOP_PATTERN(AtenBitwiseRightShiftTensorOp);
|
INSERT_ATENOP_PATTERN(AtenBitwiseRightShiftTensorOp);
|
||||||
|
|
||||||
INSERT_ATENOP_PATTERN(AtenTrilOp);
|
INSERT_ATENOP_PATTERN(AtenTrilOp);
|
||||||
|
INSERT_ATENOP_PATTERN(AtenIsfiniteOp);
|
||||||
#undef INSERT_ATENOP_PATTERN
|
#undef INSERT_ATENOP_PATTERN
|
||||||
|
|
||||||
#define INSERT_BINARY_BROADCAST_PATTERN(AtenOp, StablehloOp) \
|
#define INSERT_BINARY_BROADCAST_PATTERN(AtenOp, StablehloOp) \
|
||||||
|
|
|
@ -6495,6 +6495,9 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_shape_fn.aten.isfinite\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||||
|
" return %arg0 : !torch.list<int>\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten.cosine_similarity\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.int, %arg3: !torch.float) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten.cosine_similarity\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.int, %arg3: !torch.float) -> !torch.list<int> {\n"
|
||||||
" %none = torch.constant.none\n"
|
" %none = torch.constant.none\n"
|
||||||
" %int1 = torch.constant.int 1\n"
|
" %int1 = torch.constant.int 1\n"
|
||||||
|
@ -11448,6 +11451,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||||
" return %1 : !torch.int\n"
|
" return %1 : !torch.int\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_dtype_fn.aten.isfinite\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||||
|
" %int11 = torch.constant.int 11\n"
|
||||||
|
" return %int11 : !torch.int\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_dtype_fn.aten.rad2deg\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
" func.func @\"__torch_mlir_dtype_fn.aten.rad2deg\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||||
" %none = torch.constant.none\n"
|
" %none = torch.constant.none\n"
|
||||||
" %str = torch.constant.str \"AssertionError: \"\n"
|
" %str = torch.constant.str \"AssertionError: \"\n"
|
||||||
|
|
|
@ -519,6 +519,7 @@ FX_IMPORTER_XFAIL_SET = {
|
||||||
"IndexPutImpl2DNoneIndexStaticModule_basic",
|
"IndexPutImpl2DNoneIndexStaticModule_basic",
|
||||||
"IndexPutImpl3DFloatNonAccumulateModule_basic",
|
"IndexPutImpl3DFloatNonAccumulateModule_basic",
|
||||||
"IndexPutImplIndexWithNoneModule_basic",
|
"IndexPutImplIndexWithNoneModule_basic",
|
||||||
|
"IsInfiniteModule_basic",
|
||||||
"InterpolateDynamicModule_sizes_nearest",
|
"InterpolateDynamicModule_sizes_nearest",
|
||||||
"IouOfModule_basic",
|
"IouOfModule_basic",
|
||||||
"MeshgridIndexingIJ_basic",
|
"MeshgridIndexingIJ_basic",
|
||||||
|
|
|
@ -222,6 +222,9 @@ def aten〇exp2〡shape(self: List[int]) -> List[int]:
|
||||||
def aten〇expm1〡shape(self: List[int]) -> List[int]:
|
def aten〇expm1〡shape(self: List[int]) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
def aten〇isfinite〡shape(self: List[int]) -> List[int]:
|
||||||
|
return self
|
||||||
|
|
||||||
def aten〇cosine_similarity〡shape(x1: List[int], x2: List[int], dim: int = 1, eps: float = 1e-08) -> List[int]:
|
def aten〇cosine_similarity〡shape(x1: List[int], x2: List[int], dim: int = 1, eps: float = 1e-08) -> List[int]:
|
||||||
broadcast = upstream_shape_functions.broadcast(x1, x2)
|
broadcast = upstream_shape_functions.broadcast(x1, x2)
|
||||||
return broadcast[:dim] + broadcast[dim + 1:]
|
return broadcast[:dim] + broadcast[dim + 1:]
|
||||||
|
@ -2656,6 +2659,9 @@ def aten〇expm1〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
self_rank, self_dtype = self_rank_dtype
|
self_rank, self_dtype = self_rank_dtype
|
||||||
return _get_dtype_of_floating_point_op(self_dtype)
|
return _get_dtype_of_floating_point_op(self_dtype)
|
||||||
|
|
||||||
|
def aten〇isfinite〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
|
return torch.bool
|
||||||
|
|
||||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, error_types={torch.complex64, torch.complex128}))
|
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, error_types={torch.complex64, torch.complex128}))
|
||||||
def aten〇rad2deg〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
def aten〇rad2deg〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
self_rank, self_dtype = self_rank_dtype
|
self_rank, self_dtype = self_rank_dtype
|
||||||
|
|
|
@ -484,6 +484,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
emit(
|
emit(
|
||||||
"aten::fake_quantize_per_channel_affine_cachemask : (Tensor, Tensor, Tensor, int, int, int) -> (Tensor, Tensor)"
|
"aten::fake_quantize_per_channel_affine_cachemask : (Tensor, Tensor, Tensor, int, int, int) -> (Tensor, Tensor)"
|
||||||
)
|
)
|
||||||
|
emit("aten::isfinite : (Tensor) -> (Tensor)")
|
||||||
emit("aten::maximum : (Tensor, Tensor) -> (Tensor)")
|
emit("aten::maximum : (Tensor, Tensor) -> (Tensor)")
|
||||||
emit("aten::minimum : (Tensor, Tensor) -> (Tensor)")
|
emit("aten::minimum : (Tensor, Tensor) -> (Tensor)")
|
||||||
emit("aten::fmax : (Tensor, Tensor) -> (Tensor)")
|
emit("aten::fmax : (Tensor, Tensor) -> (Tensor)")
|
||||||
|
|
|
@ -4373,6 +4373,29 @@ def PowIntFloatModule_basic(module, tu: TestUtils):
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class IsInfiniteModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args(
|
||||||
|
[
|
||||||
|
None,
|
||||||
|
([-1], torch.float32, True),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.ops.aten.isfinite(x)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: IsInfiniteModule())
|
||||||
|
def IsInfiniteModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(torch.tensor([-torch.inf, torch.inf, torch.nan, -2.3, 0.0, 1.5]))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
class BaddbmmDynamicModule(torch.nn.Module):
|
class BaddbmmDynamicModule(torch.nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
Loading…
Reference in New Issue