Add lowering of `aten.log_softmax` op.

The `aten.log_softmax` is decomposed into `aten.softmax` and
`aten.log` op.
pull/396/head
Prashant Kumar 2021-11-02 17:06:04 +00:00
parent 127c7d8e27
commit ef897dbb19
5 changed files with 79 additions and 6 deletions

View File

@ -512,3 +512,20 @@ class TensorToInt(torch.nn.Module):
@register_test_case(module_factory=lambda: TensorToInt()) @register_test_case(module_factory=lambda: TensorToInt())
def TensorToInt_basic(module, tu: TestUtils): def TensorToInt_basic(module, tu: TestUtils):
module.forward(torch.randint(10,[]), tu.rand()) module.forward(torch.randint(10,[]), tu.rand())
class LogSoftmaxIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.log_softmax = torch.nn.LogSoftmax(2)
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, tensor):
return self.log_softmax.forward(tensor)
@register_test_case(module_factory=lambda: LogSoftmaxIntModule())
def LogSoftmaxIntModule_basic(module, tu: TestUtils):
module.forward(torch.randn(3, 2, 4).double())

View File

@ -1088,6 +1088,22 @@ def Torch_AtenSoftmaxIntOp : Torch_Op<"aten.softmax.int", [
let assemblyFormat = "$self `,` $dim `,` $dtype attr-dict `:` type($self) `,` type($dim) `,` type($dtype) `->` type($result)"; let assemblyFormat = "$self `,` $dim `,` $dtype attr-dict `:` type($self) `,` type($dim) `,` type($dtype) `->` type($result)";
} }
def Torch_AtenLogSoftmaxIntOp : Torch_Op<"aten.log_softmax.int", [
AllowsTypeRefinement,
HasValueSemantics
]> {
let summary = "Generated op for `aten::log_softmax.int : (Tensor, int, int?) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
Torch_IntType:$dim,
TorchOptionalIntType:$dtype
);
let results = (outs
AnyTorchTensorType:$result
);
let assemblyFormat = "$self `,` $dim `,` $dtype attr-dict `:` type($self) `,` type($dim) `,` type($dtype) `->` type($result)";
}
def Torch_AtenAdaptiveAvgPool2dOp : Torch_Op<"aten.adaptive_avg_pool2d", [ def Torch_AtenAdaptiveAvgPool2dOp : Torch_Op<"aten.adaptive_avg_pool2d", [
AllowsTypeRefinement, AllowsTypeRefinement,
HasValueSemantics HasValueSemantics

View File

@ -88,6 +88,34 @@ public:
}; };
} // namespace } // namespace
// Decompose aten.log_softmax op into: log(softmax(x))
namespace {
class DecomposeAtenLogSoftmaxIntOp
: public OpRewritePattern<AtenLogSoftmaxIntOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenLogSoftmaxIntOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.self();
Value dim = op.dim();
if (!op.dtype().getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "Unimplemented non-None dtype for log_softmax");
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
// softmax(x, dim)
Value softmax = rewriter.create<AtenSoftmaxIntOp>(loc, tensorType, self,
dim, op.dtype());
rewriter.replaceOpWithNewOp<AtenLogOp>(op, op.getType(), softmax);
return success();
}
};
} // namespace
// Decompose torch.matmul into: torch.mm and torch.bmm according to ranks. // Decompose torch.matmul into: torch.mm and torch.bmm according to ranks.
namespace { namespace {
class DecomposeAtenMatmulOp : public OpRewritePattern<AtenMatmulOp> { class DecomposeAtenMatmulOp : public OpRewritePattern<AtenMatmulOp> {
@ -125,6 +153,8 @@ class DecomposeComplexOpsPass
patterns.add<DecomposeAtenSoftmaxIntOp>(context); patterns.add<DecomposeAtenSoftmaxIntOp>(context);
target.addIllegalOp<AtenSoftmaxIntOp>(); target.addIllegalOp<AtenSoftmaxIntOp>();
patterns.add<DecomposeAtenLogSoftmaxIntOp>(context);
target.addIllegalOp<AtenLogSoftmaxIntOp>();
patterns.add<DecomposeAtenMatmulOp>(context); patterns.add<DecomposeAtenMatmulOp>(context);
target.addDynamicallyLegalOp<AtenMatmulOp>([](AtenMatmulOp op) { target.addDynamicallyLegalOp<AtenMatmulOp>([](AtenMatmulOp op) {
int lhsRank = getTensorRank(op.self()); int lhsRank = getTensorRank(op.self());

View File

@ -411,7 +411,9 @@ public:
} else if (auto matmul = dyn_cast<AtenMatmulOp>(op)) { } else if (auto matmul = dyn_cast<AtenMatmulOp>(op)) {
return visitAtenMatmulOp(matmul, operands); return visitAtenMatmulOp(matmul, operands);
} else if (auto softmaxIntOp = dyn_cast<AtenSoftmaxIntOp>(op)) { } else if (auto softmaxIntOp = dyn_cast<AtenSoftmaxIntOp>(op)) {
return visitAtenSoftmaxIntOp(softmaxIntOp, operands); return visitAtenSoftmaxLikeOp(softmaxIntOp, operands);
} else if (auto logSoftmaxIntOp = dyn_cast<AtenLogSoftmaxIntOp>(op)) {
return visitAtenSoftmaxLikeOp(logSoftmaxIntOp, operands);
} }
// Otherwise, this is an unknown operation. Just mark all results as // Otherwise, this is an unknown operation. Just mark all results as
@ -511,11 +513,13 @@ private:
visitAtenBmmOp(AtenBmmOp op, visitAtenBmmOp(AtenBmmOp op,
ArrayRef<LatticeElement<ValueKnowledge> *> operands); ArrayRef<LatticeElement<ValueKnowledge> *> operands);
ChangeResult ChangeResult
visitAtenSoftmaxIntOp(AtenSoftmaxIntOp op,
ArrayRef<LatticeElement<ValueKnowledge> *> operands);
ChangeResult
visitAtenMatmulOp(AtenMatmulOp op, visitAtenMatmulOp(AtenMatmulOp op,
ArrayRef<LatticeElement<ValueKnowledge> *> operands); ArrayRef<LatticeElement<ValueKnowledge> *> operands);
template <typename OpTy>
ChangeResult
visitAtenSoftmaxLikeOp(OpTy op,
ArrayRef<LatticeElement<ValueKnowledge> *> operands);
}; };
} // namespace } // namespace
@ -1259,8 +1263,11 @@ ChangeResult TypeAnalyzer::visitAtenEmbeddingOp(
return getLatticeElement(op.getResult()).join(knowledge); return getLatticeElement(op.getResult()).join(knowledge);
} }
ChangeResult TypeAnalyzer::visitAtenSoftmaxIntOp(
AtenSoftmaxIntOp op, ArrayRef<LatticeElement<ValueKnowledge> *> operands) { // Common template for softmax like ops, eg., log_softmax.
template <typename OpTy>
ChangeResult TypeAnalyzer::visitAtenSoftmaxLikeOp(
OpTy op, ArrayRef<LatticeElement<ValueKnowledge> *> operands) {
auto input = operands[0]->getValue(); auto input = operands[0]->getValue();
auto dtype = op.dtype(); auto dtype = op.dtype();
auto knowledge = auto knowledge =

View File

@ -495,6 +495,9 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
emit( emit(
"aten::softmax.int : (Tensor, int, int?) -> (Tensor)" "aten::softmax.int : (Tensor, int, int?) -> (Tensor)"
) )
emit(
"aten::log_softmax.int : (Tensor, int, int?) -> (Tensor)"
)
emit("aten::adaptive_avg_pool2d : (Tensor, int[]) -> (Tensor)") emit("aten::adaptive_avg_pool2d : (Tensor, int[]) -> (Tensor)")
emit("aten::topk : (Tensor, int, int, bool, bool) -> (Tensor, Tensor)") emit("aten::topk : (Tensor, int, int, bool, bool) -> (Tensor, Tensor)")
emit("aten::transpose.int : (Tensor, int, int) -> (Tensor)") emit("aten::transpose.int : (Tensor, int, int) -> (Tensor)")