All e2e iree tests compiled, but they have the run issue of mismatch of
dtype like the following
```
expected:
1x1x2x2xsi32=[[[12 16][24 28]]]
actual:
1x1x2x2xi32=[[[12 16][24 28]]]
```
* promote input to output element-type when lowering to stablehlo, so
that it could satisfy stablehlo's type constraints.
* split promote-to-fp unary ops from fp-only unary ops.
This commit also cleans up the OnnxToTorch lowering for the Squeeze and
Unsqueeze op and adds the support for handling edge cases.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Version number was set too high. Lowered to support more cases allows
more tests to pass.
Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
Previous implementation erroneously mixed up num_outputs with
slice_size. New version correctly computs the slice size and directly
performs slicing rather than leveraging `aten.split.tensor`. This is due
to `onnx` supporting a fixed number of splits making the size
computation more easily computeable when lowering to `aten` rather than
deferring to `aten.split.tensor`.
---------
Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
We can map to `tensor.reshape` for handling multiple output dynamic
shapes. Later we can perform a more complex analysis for indentifying
expand/collapse cases from the tensor.reshape.
Initially we planned to handle this identification at the `torch` level
however it will be easier to handle once converted to core
mlir-dialects.
Decomposition RepeatInterleaveSelfInt with following ops:
```python
def my_repeat_interleave(input, repeats, dim=None):
if dim is None:
# Flatten the input and then repeat
return input.flatten().unsqueeze(-1).tile((1, repeats)).flatten()
else:
# Calculate the shape after repeat
expanded_shape = list(input.shape)
expanded_shape[dim] *= repeats
# Repeat the tensor along the specified dimension
repeat_shape = [1] * (input.dim() + 1)
repeat_shape[dim + 1] = repeats
input = input.unsqueeze(-1)
# Tile and then reshape
tiled = torch.tile(input, repeat_shape)
# Rearrange and reshape
repeated = tiled.reshape(*expanded_shape)
return repeated
```
I passed the tests of stablehlo and linalg. When testing onnx, strange
things happened.
In torch-mlir's CI **torch_nightly** and my own
environment(torch==2.4.0.dev20240318+cpu), it can **pass the pass**.
In torch-mlir's CI **torch_stable**, it **failed**.
The test case is `RepeatInterleaveSelfIntNoDimModule_basic`, the result
shape should be [120].
```python
class RepeatInterleaveSelfIntNoDimModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([3, 4, 5], torch.float32, True),
])
def forward(self, x):
return x.repeat_interleave(2)
@register_test_case(module_factory=lambda: RepeatInterleaveSelfIntNoDimModule())
def RepeatInterleaveSelfIntNoDimModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5))
```
The error log is as follows:
```
Unexpected outcome summary: (onnx)
****** Failed tests - 1 tests
FAIL - "RepeatInterleaveSelfIntNoDimModule_basic"
@ trace item #0 - call to "forward"
@ output of call to "forward"
ERROR: shape (torch.Size([6, 4, 5])) is not equal to golden shape (torch.Size([120]))
```
@rsuderman
Would you please help me check what's wrong with my PR? Thanks a lot.
weights and biases and other model parameters appear as a separate data
structure to the traced graph, but are needed when running the MLIR
compiled code; this PR implements that extended functionality
Align corner modes which select what the corners mean.
Either the center of the corner points or the edges of the edge points.
---------
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
The new cases added for quantized matmuls are:
1. vec-vec
2. vec-mat
3. mat-vec
each of which are now lowered to expand(s), quantized_matmul, and
collapse.
1. onnx.MatMulInteger now converts to aten.matmul instead of aten.mm
2. aten.matmul, for ranks >=2, now allows quantized inputs and will
lower to linalg::quantized_matmul or linalg::quantized_batch_matmul.
3. added AtenMatmulOp to the FuseQuantizeOps rewrite patters
QuantizeOperands, QuantizeTransposedOperands, and QuantizeAccumulator
4. added several tests, including some to test AtenMmOp with varying
quantization signed-ness.
5. a quantized matmul mat-vec test is added to verify the failure to
lower to linalg; cleaned of out-of-date code related to common
torch-mlir lowering xfails.
6. in debugging a real model with quantized matmuls, I found a bug on
the scalarize-shapes pass which resulted from the aten.full op folder
returning an incompatible result type. This is fixed by the small change
here to
[lib/Dialect/Torch/IR/TorchOps.cpp](https://github.com/llvm/torch-mlir/compare/main...zjgarvey:torch-mlir:MatMulIntegerFix?expand=1#diff-dc8ed165c207918e606490eee3984b1ad51d7034e6aac36fc046bf47f6f03f4f).
- Added linalg lowering for `AtenFloorDivideScalarOp`
- Needed `AtenDivScalarModeOp` for the decomp.
- Added linalg lowering for `AtenDivScalarModeOp`
- Moved linalg payload logic to `createDivModePayload()` since the logic
was nearly identical for both `AtenDivScalarModeOp` and
`AtenDivTensorModeOp`. Just a template function
- Added `AtenDivScalarModeOp` lowering for stablehlo
Pytorch's
[`torch.floor_divide()`](https://pytorch.org/docs/stable/generated/torch.floor_divide.html)
in a previous version (for a reason unknown to me) preformed a
truncation instead of "floor". The already implemented op
`AtenFloorDivideTensorOp` was done before this change. However, this
wasn't caught because our testcases only tested positive floor division.
I changed this to floor as well as adding a few test cases.
As this
issuecomment(https://github.com/llvm/torch-mlir/pull/3021#issuecomment-2031248199)
suggests, `setup.py` should only be used for building Python packages,
so:
* disabled the develop command
* refactor the environment variable parameters
* add more doc for the usage and env var of setup.py
If there is only a single value scattered there can be an implicit batch
dimension. This includes a check for the implicit batch dimension when
reshaping the update tensor. It includes an e2e test to verify
correctness.