The canonicalizer converts `torch.prim.dtype` ops into integer constants
for valid types, but the type may not be known until type refinement is
complete. However, type refinement cannot make progress until
`torch.prim.dtype` ops have been resolved to their corresponding integer
constants, thus creating a circular dependency.
This patch creates a tight coupling between type refinement and the
lowering of `torch.prim.dtype` ops by handling such ops as they are
encountered during type refinement. The unit test in this patch aims to
check whether the type refinement pass can now handle chains of
operations that alternate between type construction and type refinement.
This patch replaces the use of raw integers like 6, 4, etc. (that
represent PyTorch's scalar types) with named values from the ScalarType
enum (e.g. `ScalarType::Float`, `ScalarType::Long`, etc.) in code for
folding `prim.dtype` ops into numeric constants.
This patch isn't strictly a non-functional change, since its use of
`Torch::getScalarTypeForType()` implies that the input type has to be
one among the supported types, otherwise compilation will abort, whereas
previously, compilation proceeded without folding the unsupported data
type into a numeric constant.
A prior patch (63538de2) that added support for bfloat16 type did not
add the canonicalization pattern to fold `torch.prim.dtype` operations
on bfloat16 tensors into the integer constant 15. This patch fixes the
problem.
A previous fix to the handling of size-1 dims in
`aten.view` (https://github.com/llvm/torch-mlir/pull/962) resulted in
the wrong grouping of dimensions when size-1 dims where between two
dims of size greater than 1. This commit fixes that.
In the `pyhpc_turbulent_kinetic_energy` TorchBench benchmark, the shape
calculation occurs inside loops, but because `DropShapeCalculationsPass`
does not explicitly mark the Torch dialect as legal, the pass execution
fails.
This patch adds Torch to the list of legal dialects, and adds a test to
validate the translation.
This commit lowers `aten.matmul` to `linalg.BatchMatmul` under the
following conditions:
1. The result of matrix multiplication must have batch dimensions,
i.e., rank greater than 2.
2. The resultant matrix must have at most 1 dynamic batch dimension.
It also handles broadcasting of batch dimensions when batch dimensions
of the matrices are broadcastable.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit fixes the shape function for `index.Tensor`, adding
support for multiple index tensors and `None`s in the indices
list. This commit also adds support for input tensors of rank greater
than 1. The lowering for `index.Tensor` still has the the limitation
that only a single index tensor along the first dimension of the input
tensor is supported.
Prior to this patch, the torch dialect included `AtenTriuOp` for
computing the upper triangular part of the input matrix, but there was
no code for lowering the op to the linalg dialect.
This patch adds code to generate a `linalg.generic` operation that
compares indices (computed using `linalg.index`) to choose between zero
or the original value (using `arith.select`). The lowering fails if the
number of dimensions are less than two. This patch also adds a few
end-to-end tests.
* [MLIR][TORCH] Add folder for torch_c.from_i64 & torch_c.to_i64
* add unit tests for each individual fold
* fix failure of NumelZeroRankModule & TestMultipleTensorAndPrimitiveTypesReturn
The MacOS builders are having linking trouble with the extension library.
Until it's fixed, all support for op extensions is disabled. It should be
easy to restore once the issue is resolved.
The function `AffineMap::inferFromExprList` does not work if the first
vector of expressions is empty, because it uses these expressions to
obtain the context. This prevented `aten.permute` from working for
inputs of 0-rank. This commit adds support for 0-rank inputs.
PyTorch allows new operators to be registered dynamically in modules.
Torch-mlir already makes it fairly straightforward to add support for
new operators, and this commit just extends that support to allow new
PyTorch ops to come from a external module.
This does *not* allow ops to be dynamically loaded into torch-mlir.
Torch-mlir must still be compiled with support built-in.
Add a `_torch_mlir_custom_op_example` subpackage to `torch_mlir` which
registers an demonstration op. It will not be imported by default when
importing torch_mlir. It's strictly for testing and documentation.
Adds an end-to-end test for the `torch_mlir_custom_op_example::identity` op.
With all these changes, we should now be actively testing PyTorch extension
support with all future patches.
Now that upstream exposes them nicely, we can use them.
I noticed that we had added stuff into the upstream_shape_helpers.py
file (which was supposed to stay pristine), so some more shape functions
need to be upstreamed.
Going forward, all shape functions should be upstreamed similar to
https://github.com/pytorch/pytorch/pull/76889 instead of added in this
file.
This commit adds lowering of `aten.div.Tensor_mode` op.
This commit also fixes formatting for the test file elementwise.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit decomposes `aten.baddbmm` op into `aten.bmm`,
`aten.mul.Scalar`, and `aten.add.Tensor` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The patch bumped up the LLVM tag made manual fixes to the code in
`ShapeLibrary.cpp`. However, since that file is generated by the
`update_shape_lib.sh` script, its contents were reverted each time the
script was run. This patch fixes the problem by removing the manual
changes to that file.
This commit adds the decomposition of `aten.adaptive_avg_pool2d` op into
`aten.avg_pool2d` op. The current decomposition only supports cases where
input size is equal to the output size.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
When compiling without assertions (i.e. in `NDEBUG` mode), a handful of
statements turn to NOPs, which results in warnings such as missing
return statement or unused variables and function. This patch replaces
such statements with `llvm_unreachable()`, which informs the compiler
about program termination regardless of the `NDEBUG` mode. This also
enables torch-mlir to be compiled using the flags `-Wall`, `-Wextra`,
`-Wpedantic`, and `-Werror`.
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
In addition to updating the llvm-project submodule, this patch also:
1. updates shape functions and tests so that `func` and `call`
operations refer to the `func` dialect
2. avoid duplicate registration of dialects
The op `aten.rand_like` was missing a shape function, unit tests, and
the `dtype` argument was being ignored in its decomposition. This
commit fixes all three things.
This commit adds support for aten.max_pool2d, aten.max_pool2d_with_indices,
and aten.avg_pool2d op for the cases where ceil_mode = true.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The preserve memory specifies that `If any of the input tensors is in channels_last format,
operator output should be in channels_last format` and hence can be
added as is in aten_empty_like op.
Fix the type promotion code for scalar only operation to return
TorchType which is the type tracked in ValueKnowledge.scalarType.
- Fix `getPromotedResultScalarType` to return Torch type.
- Add `getBuiltInTypeForTorchScalar` helper to convert scalar type
to builtin type before passing to the next level type promotion
helper `updateResultTypeState`.
- Add `setScalarType` helper to make setting ValueKnowledge.scalarType
easier.
This commit adds lowering of `aten.ge.float`, `aten.ge.float_int`,
`aten.ne.float_int`, `aten.gt.float_int` and `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py and scalar_comparison.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The main changes are:
- Added `ValueKnowledge.scalarType` to track scalar type information.
- Added `ValueKnowledge.kind` to indicate the value kind.
- Modified the meet and join helper functions. The ValueKnowledge has
slightly more complicated state now so the meet and join function need
to look at the `kind` field in addition to just the type field.
- This commit adds support for `aten.mean.dim` op.
- It also adds a new test script `stats.py` for statistics related ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This also has a fix for the adjustment of types of TupleConstruct
inputs, which I found when using this new functionality on a model.
Some scenarios in tracing create situations where the output of
TupleConstruct has a more refined type than the inputs.
This introduces a helper `adjustStaticInformationForValues` which
subsumes the `derefineValues` helper and the tensor static information
adjustment we were doing.
This commit decomposes `aten.to.dtype_layout` op into `aten.to.dtype` op.
This commit also fixes the formatting for the file type_conversion.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds lowering of `aten.masked_fill.Scalar` op.
This commit also fixes the formatting of the file constant_alloc.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit fixes the `ConstantPad2dStaticModule` test case by adding
the lowering of `aten.pad` operation. Previously the test case
mapped to `aten.constant_pad_nd` operation.
The `aten.pad` now decomposes into `aten.constant_pad_nd` operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is BFloat16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
1. This commit adds lowering of "while-like" prim loop to scf.while
operation.
2. Adds lowering of "for-like" prim loops to scf.for operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
This commit adds lowering of `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
Prior to this patch, the result type for several tensor operations could
only be float32, float64, or null. This patch adds bf16 to the list of
allowed result types.
Added the dynamic registration of return function to the execution
engine. This makes sure that different/multiple return types are supported.
Also, updated the .style.yapf indentation to 4.
* shape: add shape transfer function for aten.neg
Prior to this patch, the list of shape transfer functions did not
include `aten.neg`, which resulted in errors like below.
```
error: unsupported by backend lowering: tensor with unknown rank or dtype
note: see current operation: %0 = "torch.aten.neg"(%arg0) :
(!torch.vtensor<[256,256],f32>) -> !torch.vtensor<*,f32>
note: this is likely due to a missing shape transfer function in shape_lib_gen.py
```
This patch fixes the problem by adding a shape transfer function to
reflect the point-wise nature of this operation.
* linalg: add translation of aten.neg operation
This patch adds a translation rule to lower `aten.neg` operations on
tensors to an `arith.negf` operation wrapped inside a `linalg.generic`
operation. This patch also adds a rudimentary test.
This commit adds lowering of `aten::max_pool2d_with_indices_backward` op.
This commit also fixes formatting issues in basic.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds the following support to the op `nll_loss_backward`:
- `input` tensor can be rank-1
- `weight` parameter
- `reduction` parameter
- `target`, `grad_output`, `total_weight` can be rank-0
- Checks that input tensors are of the expected type
This commit adds support for multi-dimensional tensors as input to the
`_index_put_impl_` op. The support was to some degree already there,
since `ScatterOp` already supports multi-dimensional tensors. This
commit also adds a bit more error checking to `index_put` and
refactors the code for creating `ScatterOp`s to mimic the way one
would make a `Linalg::GenericOp`.
The issue was in the canonicalizer for torch.aten.ge.int -- in cases
where the operands were swapped, it would miscompile. This issue is
fixed and folding support generalized to `torch.aten.size.int < 0` as
well.
Fixes#716
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.
This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287
Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
that derefines to a UnionType (this also fixes#664).
There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.