Commit Graph

2743 Commits (3c252cdd44f411ef67e3a759319be53b46396d44)
 

Author SHA1 Message Date
IanWood1 8ff28527cb
Add more descriptive error message to torch_ods_gen.py. (#3108)
Added error message when adding new torch op to
[torch_ods_gen.py](https://github.com/llvm/torch-mlir/compare/main...IanWood1:torch-mlir:ods_gen_error_message?expand=1#diff-889b60b904ed67a5065a14e8de6fc89e00e199577e4d2bfa134ac4d1c89832d2).


New message displays which op key is failing and possible matches in the
torch `Registry`.
```Op does not match any Torch ops in Registry 
Given op: 
    "aten::hardtanh_wrong : (Tensor, Scalar) -> (Tensor)" 
Possible matches: 
    "aten::hardshrink : (Tensor, Scalar) -> (Tensor)" 
    "aten::hardtanh_ : (Tensor, Scalar, Scalar) -> (Tensor)" 
    "aten::hardtanh : (Tensor, Scalar, Scalar) -> (Tensor)"
    "aten::clamp_min : (Tensor, Scalar) -> (Tensor)" 
    "aten::linalg_cond : (Tensor, Scalar?) -> (Tensor)"```



Also, ran black formatting on file. Based on LLVM style guides this seems to be correct, but I can revert the formatting if needed.
2024-04-09 09:50:34 -07:00
Yuanqiang Liu 8d5e2578b0
[Stablehlo] lowering aten.view to shape.num_elements + stablehlo.comp… (#3125)
…ute_reshape_shape

as that `aten.view` support at most one `-1` in dim list. The original
calculation of `numel` is wrong when there is a `-1` in dim list.
2024-04-09 14:54:57 +08:00
Xinyu Yang 42a16fa912
[Torch] Support Aten_CastFloatOp. (#3115)
By canonicalize Aten_CastFloatOp into AtenToDtypeOp
2024-04-09 11:06:53 +08:00
Sambhav Jain 04aeb4913f
Disable LTC from release builds to bypass linker issue (#3121)
Workaround for https://github.com/llvm/torch-mlir/issues/3120. This
should bring prebuilt releases back to green:
https://github.com/llvm/torch-mlir-release/actions.
2024-04-08 18:23:46 -07:00
Aart Bik 5797d3aa57
[torch-mlir][sparse] add a COO test for 3-dim (#3119)
This tests COO for more than 2-dim. Note that sparsity should really
propagate into the relu activation and the output, but such cleverness
needs to wait for the pending work in the PyTorch tree.
2024-04-08 16:46:51 -07:00
Xida Ren (Cedar) dd967eb199
[ONNX] Support onnx.LSTM (#2969)
This PR only performs a lit test. In lieu of an e2e test, https://github.com/nod-ai/SHARK-TestSuite/pull/142 makede sure that the lowering works & the numbers check out.

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-08 12:23:33 -07:00
Vivek Khandelwal 1d6e4c3d77
[MLIR][TORCH] Add OnnxToTorch lowering for Einsum op (#3117)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-08 22:38:01 +05:30
Xinyu Yang 84c24e5771
[Torch] Support Aten__And__ScalarOp (#3114) 2024-04-08 20:24:17 +08:00
Yuanqiang Liu 2c56ef9252
[Torch Dialect] canonicalize aten.sign to aten.sgn (#3112)
* `aten.sign` is a sub-set of `aten.sgn` (`aten.sgn` support complex
type).
2024-04-08 20:05:42 +08:00
Yuanqiang Liu 43d54efd14
[cmake] link TorchMLIRTorchConversionPasses to TorchMLIRConversionPasses (#3113)
* as that `TorchMLIRTorchConversionPasses` missing dependencies of
`TorchMLIRTorchToStablehlo` and `TorchMLIRTorchToTensor`.
* use `TorchMLIRConversionPasses` instead of scattered targets.
2024-04-08 14:44:34 +08:00
Yuanqiang Liu 498ab997cd
[Stablehlo] lowering aten.log1p to stablehlo.log_plus_one (#3110) 2024-04-07 17:01:58 +08:00
Yuanqiang Liu 0a00f38a7e
[Stablehlo] add stablehlo-aggressive-simplification in e2e test (#3109)
* so that more stablehlo e2e testcases would pass.
2024-04-07 10:48:11 +08:00
Rob Suderman 9d9a05366e
[torch] Fix aten.squeeze lowering to use result shape (#3106)
Squeezes can be ambiguous without the output shape information. For
instance (1, 1, 256) squeezed can be either (1, 256) or (256). We need
to check the resulting shape to know what the shape should look like.
2024-04-04 09:43:12 -07:00
Vivek Khandelwal af54d27820
[MLIR][TORCH] Fix Onnx.TopK lowering (#3103)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 22:12:48 +05:30
Vivek Khandelwal 7e778e2179
build: manually update PyTorch version (#3094)
Set PyTorch and TorchVision version to nightly release 2024-04-01.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 10:48:37 +05:30
Vivek Khandelwal ce7d4f1660
[MLIR][TORCH] Fix Onnx.ReduceSum lowering for failing e2e tests (#3095)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 09:57:19 +05:30
Rob Suderman f97cd4893f
[torch] Improve shape inference for dynamic shapes (#3091)
Shapes can be processed as tensors to represent the set of dimensions.
As reshapes take a list of scalars this can result in a single dynamic
dimension blocking the adjacent static dimensions.

This pass attempts to de-couple tensor computations related to shapes
and propagate values to better support lowering scalar tensor
computations.
2024-04-02 16:19:57 -07:00
Sambhav Jain 401869e31d
[Bazel] Use bazel 6 to support dict select union (#3100)
Bazel builds broke with the recent LLVM bump due to union select of
dictionaries:
```bazel
    substitutions = {
        "#cmakedefine01 MLIR_DEPRECATED_GPU_SERIALIZATION_ENABLE": "#define MLIR_DEPRECATED_GPU_SERIALIZATION_ENABLE 0",
        "#cmakedefine01 MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS": "#define MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS 0",
        "#cmakedefine MLIR_GREEDY_REWRITE_RANDOMIZER_SEED ${MLIR_GREEDY_REWRITE_RANDOMIZER_SEED}": "/* #undef MLIR_GREEDY_REWRITE_RANDOMIZER_SEED */",
        "#cmakedefine01 MLIR_ENABLE_NVPTXCOMPILER": "#define MLIR_ENABLE_NVPTXCOMPILER 0",
        "#cmakedefine01 MLIR_ENABLE_PDL_IN_PATTERNMATCH": "#define MLIR_ENABLE_PDL_IN_PATTERNMATCH 1",
        "#cmakedefine01 MLIR_ENABLE_ROCM_CONVERSIONS": "#define MLIR_ENABLE_ROCM_CONVERSIONS 0",
    } | if_cuda_available(
        {"#cmakedefine01 MLIR_ENABLE_CUDA_CONVERSIONS": "#define MLIR_ENABLE_CUDA_CONVERSIONS 1"},
        {"#cmakedefine01 MLIR_ENABLE_CUDA_CONVERSIONS": "#define MLIR_ENABLE_CUDA_CONVERSIONS 0"},
    ),
```
```
Analyzing: target @torch-mlir//:torch-mlir-opt (1 packages loaded, 0 targets configured)
ERROR: Traceback (most recent call last):
	File "/root/.cache/bazel/_bazel_root/b89349c08f7224396763d[14](https://github.com/llvm/torch-mlir/actions/runs/8515127977/job/23322023669#step:8:15)fe35cba11/external/llvm-project/mlir/BUILD.bazel", line 41, column 7, in <toplevel>
		} | if_cuda_available(
Error: unsupported binary operation: dict | select
```

Bazel 6 supports dict select union
ebae4860db
after starlark added support for union over dictionaries. This PR bumps
bazel to 6.4, and adds a missing dep.

torch-mlir's bazel build:
https://github.com/sjain-stanford/torch-mlir/actions/runs/8530438588/job/23368225180
2024-04-02 15:51:01 -07:00
Stella Laurenzo ffaaf08c31
[fx] Fix type inference for scalar/int types. (#3099)
This was discovered in a downstream test suite and was due to a control
flow nesting merge issue. In-tree test added and fixed.
2024-04-02 13:56:43 -07:00
zjgarvey 40e762ca42
Adds result types to a prelu decomp (#3098)
This adds explicit result types instead of relying on shape/dtype
computations.

Solves a regression issue with IREE: #3092
2024-04-02 11:41:56 -07:00
Yuanqiang Liu 6cbb2f7ae0
[Stablehlo] add stablehlo-canonicalize-dynamism when lowering (#3097)
so that many stablehlo e2e testcases could pass
2024-04-02 22:47:24 +08:00
Vivek Khandelwal d1f770c620
[MLIR][TORCH] Fix OnnxToLinalg lowering issue for ReduceMean op (#3008)
This commit also cleans up the OnnxToTorch lowering for the ReduceMean
op and adds the support for handling edge cases.

Signed-Off By: Vivek Khandelwal vivekkhandelwal1424@gmail.com
2024-04-02 16:54:04 +05:30
Xinyu Yang ac1cd3d78a
[Torch] Support AtenDivTensorModeOp with static int input for linalg and stablehlo backend (#3088) 2024-04-02 17:28:53 +08:00
Thomas Dietert d2432bbe5a
[MLIR][Torch] Do not convert bias tensor to element type if NoneType (#3072)
The `convertTensorToElementType` function expects it's argument to have
a valid tensor type that is not `Torch::NoneType`. This PR checks that
the bias tensor is not of type `Torch::NoneType` before calling
`convertTensorToElementType` on the bias tensor argument in the
`matchAndRewrite` member function of the `ConvertAtenConvolutionOp`
class.
2024-04-02 14:19:26 +05:30
ptrifunovic98 1c8c47d483
Add complex support for aten.norm and similar operations (#3052)
Add support for complex-type input tensors for norm, vector norm, and
Frobenius norm operations.
2024-04-02 14:03:30 +05:30
Rob Suderman 0f5d5e9f4e
[stablehlo] Fix test stablehlo e2e test suite (#3093)
There is an issue with stablehlo's linalg compilation. Canonicalization
appears to cleanup the issues until we can determine what in
mlir/stablehlo is the source of the issue.
2024-04-02 12:40:00 +08:00
penguin_wwy 5325d3e6e6
[fx] Fix type hint for fx importer (#3066)
Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
2024-04-01 17:31:43 -07:00
Rob Suderman ec4cb8be44
Bump LLVM to llvm/llvm-project@0030fc4ac7 (#3079)
Co-authored-by: Peiming Liu <peiming@google.com>
2024-04-01 16:34:59 -07:00
zjgarvey 532d297c46
[ONNX] Preliminary Work Towards Supporting QuantizedMLP_basic onnx e2e test (#3089)
See the related issues here:
[SHARK-Turbine#556](https://github.com/nod-ai/SHARK-Turbine/issues/556)

1. Adds uint8 casting to onnx.Cast op
2. Fixes an issue with onnx.DequantizeLinear when the scale comes with
shape [1].
3. Adds support for unsigned types in an AtenItemOp folder
4. Adds a simpler quantized model for easier debugging
5. Adds a fusion pass to convert [quant -> dequant -> transpose -> mm]
patterns to [transpose -> quant -> mm].
6. Moved some xfails that are still not passing, but for different
reasons than onnx.cast failures.
2024-04-01 16:21:05 -07:00
Thomas Dietert 3c33dbd987
[MLIR][Torch] Canonicalize torch.from_i1 and torch.to_i1 (#3067)
When lowering `torch.aten.convolution`, it is expected that the
'transposed' argument is a torch.constant operation. In some cases, the
argument was a `from_i1` operation converting an `arith.constant`
operation into a torch.bool. This is not wrong semantically, but instead
of generalizing the legality of the `torch.aten.convolution` op, we
canonicalize `arith.constant` ops followed by `from_i1` ops to
`torch.bool` ops.

For example:
```
//===-------------------------------------------===//
Legalizing operation : 'torch.aten.convolution'(0x124705b90) {
  %33 = "torch.aten.convolution"(%arg0, %20, %21, %31, %29, %30, %19, %32, %0) : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int) -> !torch.vtensor<[1,10,24,24],f32>

  * Fold {
  } -> FAILURE : unable to fold

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : unimplemented: only constant transposed supported.      <-- Resolved by this PR
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported Scalar to Tensor like op
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported elementwise op
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported reduce op
  } -> FAILURE : pattern failed to match
} -> FAILURE : no matched legalization pattern
//===-------------------------------------------===//
<stdin>:21:11: error: failed to legalize operation 'torch.aten.convolution' that was explicitly marked illegal
    %17 = torch.operator "onnx.Conv"(%arg0, %0, %1) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [5 : si64, 5 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [1 : si64, 1 : si64]} : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>) -> !torch.vtensor<[1,10,24,24],f32> 
          ^
<stdin>:21:11: note: see current operation: %33 = "torch.aten.convolution"(%arg0, %20, %21, %31, %29, %30, %19, %32, %0) : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int) -> !torch.vtensor<[1,10,24,24],f32>
```

Additionally, we require the canonicalization of `to_i1` operating on a
torch.constant bool to an `arith.constant ... : i1` for the e2e tests to
pass successfully.
2024-04-01 14:25:51 -07:00
penguin_wwy b98f7f75dc
[stablehlo] Reduce unnecessary template specialization code (#3047) 2024-04-01 14:18:49 -07:00
Stella Laurenzo 826786bdd0
[fx] Support ExportedProgram buffer mutation. (#3080)
In the prior state when I supported mutation of user inputs by treating
them as mutable-tensor SSA values, I had left the case of buffer
mutation only vaguely implemented until a concrete use emerged.
    
This patch reworks this buffer mutation support by assuming that buffers
must be resolved via the hooks symbolically and treated with load/store
semantics. This is implied in the structure since we have no SSA value
that represents a buffer and we already assume that reading parameters
happens via such a mechanism.
2024-04-01 14:18:12 -07:00
miheer vaidya fe2fb9d9f5
[README] update links to snapshot packages (#3073)
Source:
https://github.com/llvm/torch-mlir/issues/3068#issuecomment-2024109412
Verified commands locally on Ubuntu 22.04 with pyenv virtualenv created
for python 3.11.
2024-04-01 14:16:02 -07:00
Xinan Jiang(姜曦楠) 1cdae6bc68
[MLIR][TORCH]Add support lowing aten.Int.bool to arith (#3083)
Now there no lowing for `aten.Int.bool` in `convert-torch-to-arith`
pass. this PR add this support.

Below is the UT.
```
func.func @torch.aten.Int.bool(%arg0: !torch.bool) -> !torch.int {
  %0 = torch.aten.Int.bool %arg0 : !torch.bool -> !torch.int
  return %0 : !torch.int
}
```
2024-04-01 10:05:08 -07:00
Vivek Khandelwal 6844c84702
[MLIR][Torch] Fix OnnxToLinalg lowering for AvgPool op (#3076)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-01 22:14:14 +05:30
Stella Laurenzo 282e9b0e64
[fx] Fix type determination for multi-return ops and static `None` returns. (#3081)
In practice, this was caught by the way that AOT autograd traces
`convolution_backward`. For the unit test, we just repro it with a
custom op.
2024-04-01 09:39:38 -07:00
Gaurav Shukla 129a79417a
[MLIR][ONNX] Fix onnx.gather_nd implementation (#3070)
The indices should be expanded before the torch.gather operation.

Signed-off-by: Gaurav Shukla <gaurav@amd.com>
2024-04-01 20:17:09 +05:30
Xinyu Yang da88efad89
[Torch] Fix bug of DecomposeAtenSelectIntOp (#3087)
Fix bug of DecomposeAtenSelectIntOp. Because it may use resultTy when
resultTy has not been inferred.

```
    auto resultTy = op.getType().cast<BaseTensorType>();
    if (sliceTy.getSizes().size() == resultTy.getSizes().size()) {
      rewriter.replaceOp(op, slice);
      return success();
    }

```

So I add restriction.
2024-04-01 21:25:02 +08:00
Jiawei Wu 76080936d4
[stablehlo] add aten.index_put and aten.scatter_add op conversion support (#3086) 2024-04-01 19:39:49 +08:00
Stella Laurenzo 6d680ff445
[ods] Allow all tensor returns to be optional. (#3082)
This was found while tracing backwards graphs: the convolution_backwards
op will return None if the first result is not needed. Confirmed by
defining a custom op with a `Tensor` return signature and having its
meta kernel return None.
2024-03-29 23:09:34 -07:00
Xinyu Yang 40008b025a
[Torch] Support prelu decomposition (#3069) 2024-03-29 08:05:00 +08:00
zjgarvey c19fc9ba47
[ONNX] Fixes Issue with Dynamic Dims in GlobalAveragePool -> Torch Conversion (#3053)
Two e2e tests (AdaptiveAveragePool1/2dUnitOutputSizeDynamic) were
failing due to numerics. This was as a result of passing -1 as the
kernel size in the lowering for the corresponding onnx op
GlobalAveragePool.
2024-03-28 09:43:09 -07:00
Xinyu Yang e6e7689a24
[Torch] support decompose aten.einsum with ellipsis slicing (#3056) 2024-03-27 12:42:10 -07:00
Xida Ren (Cedar) 5f325749f9
add lowerings for AtenLtIntOp and AtenLeIntOp (#3061)
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-03-27 10:06:43 -07:00
Sambhav Jain 7825e12483
[Bazel] Add dep from `TorchPasses` to `TorchBackendTypeConversion` (#3065)
https://github.com/llvm/torch-mlir/pull/3055 adds
`lib/Dialect/Torch/Transforms/ScalarizeShapes.cpp`, which depends on
`torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h`.
```
ERROR: /root/.cache/bazel/_bazel_root/b89349c08f7224396763d14fe35cba11/external/torch-mlir/BUILD.bazel:170:11: Compiling lib/Dialect/Torch/Transforms/ScalarizeShapes.cpp failed: (Exit 1): clang failed: error executing command /usr/lib/llvm-16/bin/clang -U_FORTIFY_SOURCE -fstack-protector -Wall -Wthread-safety -Wself-assign -Wunused-but-set-parameter -Wno-free-nonheap-object -fcolor-diagnostics -fno-omit-frame-pointer ... (remaining 101 arguments skipped)

Use --sandbox_debug to see verbose messages from the sandbox and retain the sandbox build root for debugging
external/torch-mlir/lib/Dialect/Torch/Transforms/ScalarizeShapes.cpp:18:10: fatal error: 'torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h' file not found
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
         ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 error generated.
Target @torch-mlir//:torch-mlir-opt failed to build
```

This PR adds the dependency and brings bazel builds back to green.

CI:
https://github.com/sjain-stanford/torch-mlir/actions/runs/8445558053/job/23132941876
2024-03-26 19:22:42 -07:00
Yuanqiang Liu 0a581a97a7
[Torch Dialect] enhance aten.int.tensor's canonicalize (#3058)
support fold with literal vtensor.  
change it to canonicalize because this pattern will create new op.
2024-03-27 09:51:58 +08:00
Stella Laurenzo e2343cf4ce
[fx] Implement auto_functionalized higher order op. (#3063)
* Also adds the basic scaffolding for handling more of these, which will
be needed for cond, while, etc.
* Refactors some of the support in the generic OpOverload emitter so it
can be shared with these other special forms.

This has been on my list for a while, but it just so happens that as
part of upgrading to PyTorch 2.3 and a pure upstream flow in Turbine, we
were using a feature that required integration with auto_functionalized.
This is perhaps the "weirdest" of the higher-order ops and a poor place
to start, but needs must. We have testing for this in Turbine.

Full support in Turbine has an entire custom ops facility. I've reduced
this down to a unit test in torch-mlir.
2024-03-26 17:06:05 -07:00
saienduri 11eaba3097
Create e2eshark_build.sh (#3062)
This commit creates a build script used by e2eshark test suite CI
2024-03-26 16:37:54 -07:00
Rob Suderman 14b548f968
[torch] Improve shape inference for `torch-to-linalg` path for reshapes (#3055)
Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
2024-03-26 12:41:40 -07:00
Stella Laurenzo 17eeac880a
[fx] Accept `func_visibility=` and return created func op. (#3054)
This is a partial landing of #3046 while waiting for an upstream change
for the rest of it.
2024-03-25 16:48:06 -07:00