Register `aten.fake_quantize_per_channel_affine` and
`aten.fake_quantize_per_tensor_affine.tensor_qparams` ops
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
This bump triggered an upstream assert. Includes a WAR for #3506.
Also includes several things I needed to do to repro:
* When TORCH_MLIR_TEST_CONCURRENCY=1, test runs will be printed.
* Added TORCH_MLIR_TEST_VERBOSE=1 handling to enable verbose mode
(useful on CI).
---------
Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
The `index_put` operation, `input[indices] = values`, allows for the
values to be any shape that is broadcastable to the slice
`input[indices]`. This commit adds broadcasting support to the Linalg
lowering of `IndexPutHackedTwinOp`.
Fixes: #3465
This adds support for a few ops:
- torch.linalg_det
- torch._linalg_det (if the LU and pivot returns are unused)
- onnx.Det
An scf loop is used, since the row reduction algorithm applied here has
some loop-carried dependencies.
The current support being added here is very basic, and only works if no
permutations are required during row reduction, and assumes the matrices
are non-singular.
This adds a torchvision op to torch-mlir and a path from onnx.DeformConv
to torchvision.deform_conv2d.
I'm not implementing the torch->linalg lowering for the torchvision op
yet, but posting this PR to get feedback on some of the choices being
made here and to flesh out the onnx frontend a bit.
This adds an onnx->torch conversion for onnx.RoiAlign into
torchvision.roi_align or torchvision.roi_pool, and adds those two
torchvision ops to torch-mlir.
Add a new op with shape/dtypes and decompose into
`fake_quantize_per_tensor_affine` when the second result is unused.
The xfail_set change is on ONNX because torch cannot export this op to
ONNX.
Resolves#3384.
Many ONNX operators are defined by functions and therefore could be
expanded into simpler ONNX operations during importing, avoiding the
need for tools downstream to support these operators directly.
This commit adds this capability to onnx_importer.py. When importing a
node, the schema for the node's operator is retrieved. If the schema
provides a function for the operator, a specialized version for the
node's types and attributes will be created and imported as an MLIR
function with private visibility. An MLIR function call will then be
emitted, instead of a normal operator node. Caching is used to avoid
generating redundant functions within the same module.
In order to avoid a disruptive change to the importer output for a
large number of operators that already have TorchOnnxToTorch support,
an allowlist strategy is used by default. With this commit, only one
operator is allowlisted for expansion, MeanVarianceNormalization.
However, many other operators can be correctly expanded by the current
code, so hopefully the allowlist can be gradually extended. It is
possible to disable the allowlist in the configuration, in which case
all functions are expanded (useful for testing).
Tools downstream of the importer may now need to do inlining when
consuming the output of the importer, e.g.:
cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch
Explanations for subtle code changes:
- Looking up the correct schema and function for an operator requires
knowing the opset version. NodeImporter retrieves this from the
opset imports on the ModelProto retained by the GraphInfo. Previously,
the model_proto field on GraphInfo was None when importing a subgraph
in import_regions, but this conflicts with the new need for opset
version info. Since the apparent purpose of setting it to None was to
control how GraphInfo generates its input map, a new flag is added to
GraphInfo (is_subgraph) to control this behavior, so that the actual
ModelProto can now be provided without breaking this. This also turned
out to be useful for getting the Config via ModelInfo via GraphInfo.
- Some operators' functions are context-dependent, which means the
function definition depends on the types of the inputs. Therefore node
importing now needs to look up the types of a node's inputs, not just
its outputs as was the case previously. Consequently the operand to
find_type_proto_for_name() may now be a graph input or initializer in
some cases, so it has to be updated.
Issues was found here https://github.com/nod-ai/SHARK-Turbine/issues/643
- [ONNX] Fix padding attributes for onnx.AveragePool
- [Linalg] Add countIncludePad false support for AtenAvgPool1/2dOp
- [Linalg] Add an avg_pool2d countIncludePad False e2e tests
- [Linalg] Fix conflict with AtenAvgPool3dOp
- [Linalg] Fix e2e crash with AtenAvgPool1dOp
- [Linalg] Add dynamic dim support for AtenAvgPool2dOp
- [Linalg] Fix AvgPool2dDivisorOverrideModule crash
This commit also adds the Torch declaration for aten.max_unpool2d and
aten.max_unpool3d op. The TorchToLinalg lowering for the same will be
added in a follow-up commit.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This addresses 7 of the model failures I'm seeing in the test suite. See
[Shark-Turbine issue
#566](https://github.com/nod-ai/SHARK-Turbine/issues/566).
Need the op ```linalg.conv_2d_ngchw_gfchw_q``` to be added upstream
before merging this. See [llvm-project PR #92136
](https://github.com/llvm/llvm-project/pull/92136).
A small additional expansion to operand quantization is included in this
patch to address a model failure that occurs when unblocking the
quantized group convolutions in one of these onnx models.
Updates:
- some unsupported modes are now going to report a match failure for
unsupported coordinate transformation modes.
- fixes a bug that was introduced in the last patch for resize (my
bad...)
- uses actual x and y coordinates for computing weights in bilinear
interpolation (rather than eps modified values)
- slightly simplifies the bilinear interpolation payload for readability
and performance
- passes coordinate transformation mode information from an onnx.Resize
op to the mode string for the aten._interpolate op. This allows us to
perform custom logic in the torch->linalg lowering to support
onnx.Resize options without losing the default behaviors of the
interpolate op.
* not to decompose `aten.amax` on `stablehlo` backend. Because it could
be lowering to `stablehlo.reduce` directly.
* lowering `aten.max.dim` to `stablehlo.reduce apply max` when
`AtenMaxDimOp.getIndices()` doesn't have users. It's more simple.
…cation and sparse tensors.
**NOTE**: This PR _doges_ the issue in buffer-deallocation pass instead
of resolving it. In the future, we need to fix the bug in
buffer-deallocation pass when handling code generated by sparse
compiler.