- Support Bidirectional LSTM (utilising the forward LSTM layer with
flipped Inputs and Outputs)
- Support layout 1
- Support default cases for attr `clip` and `input_forget`
- Support returning partial outputs (1-3)
- fixes for alt_e2e_tests lstm tests (1,2,3)
This commit adds the support for the 1-d depthwise convolution as a
special case of 1-d group convolution.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This commit adds the support for negative step values in
aten.slice.Tensor op. Although, PyTorch does not allow negative step
value for slice op but the Onnx.Slice op supports negative step value
which eventually lowers to torch.aten.slice.Tensor op. Hence, the
support is added for handling those kind of values during the
Torch->Linalg lowering of aten.slice.Tensor op.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
- Add Torch to TOSA lowering for aten.fill.Scalar/Tensor, aten.flip, and
aten.round
- Fix torchScalarToTosaTensor function to correctly convert Torch scalar
input to TOSA tensor
- Update xfail_sets.py with new e2e results
- Update basic.mlir with LIT tests for new ops
Change-Id: If1e42c2e582710dd8ad0465eed29806fbcdbde41
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
- Add Torch to TOSA legalization for aten.index_select
- Fix createOneDimTfIndices function in TosaLegalizeCommon.cpp to
correctly convert Torch indices to TF-style indices, which is used in
convertGatherNdOp
- Update e2e tests in xfail_sets.py
- Update basic.mlir with new LIT test for aten.index_select
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Change-Id: I52519246183949353a3cf22f0a685fe3df8ec8ff
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Addresses ~200 onnx model compile failures in
<https://github.com/nod-ai/SHARK-TestSuite> related to
<https://github.com/iree-org/iree/issues/18631>.
This change simplifies the result of the generated broadcast op
substantially, but reduces the case coverage slightly.
The case which will become unsupported:
- trying to actually broadcast a dynamic dim that is secretly 1.
When does this case appear in practical scenarios?
- for a model where onnx shape inference cannot figure out that a dim
should be 1.
Why do I think we should not support this case for now?
1. For all models with dynamic dim expand ops, the previous path
uniformly generates uglier linalg IR (making it harder for IREE to fuse
properly with other ops).
2. For models failing shape inference castastrophically enough to fail
to see a dim is statically 1, we can try to apply constant folding in
the onnx model before importing.
Leaving this as a draft PR, since it may be more appropriate to fix the
compilation failure in IREE rather than torch-mlir.
### Example of broadcast required in previous path:
```mlir
%300 = linalg.generic {indexing_maps = [#map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} outs(%299 : tensor<?x12x?x?xi1>) {
^bb0(%out: i1):
%306 = linalg.index 0 : index
%307 = linalg.index 3 : index
%308 = arith.index_cast %285 : i64 to index
%309 = arith.cmpi eq, %308, %c1 : index
%310 = arith.select %309, %c0, %306 : index
%311 = arith.index_cast %286 : i64 to index
%312 = arith.cmpi eq, %311, %c1 : index
%313 = arith.select %312, %c0, %307 : index
%extracted_79 = tensor.extract %reshape_78[%310, %c0, %c0, %313] : tensor<?x1x1x?xi1>
linalg.yield %extracted_79 : i1
} -> tensor<?x12x?x?xi1>
```
### Example of broadcast with simplified shape list:
```mlir
%409 = linalg.generic {indexing_maps = [#map15, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%reshape_135 : tensor<?x1x1x?xi1>) outs(%408 : tensor<?x12x?x?xi1>) {
^bb0(%in: i1, %out: i1):
linalg.yield %in : i1
} -> tensor<?x12x?x?xi1>
```
The op can be valid with no attached shape symbols if they are not
required by the corresponding affine map. Fix the verifier to consider
number of arguments for both.
- Add lowering from Torch to TOSA for aten.diagonal
- Clean up some code
- Update xfail_sets.py with the new e2e results
- Update basic_mlir with the new op mlir test
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Change-Id: I99bed685455752d09ed96edd837c4dfbee152701
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Instead of
`Unhandled type in getScalarTypeForType`
You now get
Unhandled type in getScalarTypeForType: (type name)
Type properties:
Is integer: yes
Bit width:
...
The root cause is https://github.com/llvm/torch-mlir/issues/3720, at
least for unsigned integer issues.
Fixes https://github.com/iree-org/iree/issues/18562.
During canonicalization pass on `AtenUnflattenIntOp`, if the second dim
was statically equal to one, we would create an `AtenAddIntOp` to add
one to the dimension obtained from `op.getDim()`. This, when passed into
`Torch::unsqueezeTensor()`, would make it get interpreted as
non-constant, which would lead to MLIR failing an assertion when
`UnsqueezeOp` would later get lowered into `ExpandShapeOp`, as the
output of the `UnsqueezeOp` would consist of only dynamic dims.
This patch fixes this behavior, by extracting the integer value from the
dim if it was constant, and then emitting a `ConstantIntOp` from
(dim+1). This creates an output with static shape.
- When the signal tensor is real, onnx allows its shape to be
`[batch][length]` as well as `[batch][length][1]`.
- Onnx also allows to specify `frame_length` together with `window` (not
empty), given that it matches the window size.
- Adding checks on signal and result shapes.
Current version does not work for a mixture of dynamic and static shaped
batch dimensions. Rework to grab the correct dynamic shapes.
---------
Co-authored-by: dan <danimal197@gmail.com>
Previously, if the value was absent, this conversion was creating a
dense resource of value 0 with shape equal to the result shape, then
later re-extracting a splat value. This only works if the shape is
statically known, and even when the shape is known, this is completely
unnecessary since the value's shape should be `[1]` and not the result
shape.
This patch simply sets the `splatvalue` to a `torch.constant.float 0.0`
when the onnx op's `value` attr is absent, and adds `nullptr` checks to
the subsequent conditionals to avoid them in the case where an `attr` is
not given.
Addresses <https://github.com/nod-ai/SHARK-Turbine/issues/831>.
- Add Torch to TOSA legalization for the following reduction ops:
+ aten.min.dim
+ aten.min
+ aten.max
+ aten.prod
+ aten.prod.dim_int
+ aten.all.dim
- Add dtype casting support for reduce sum and prod ops
- Extend aten.max.dim legalization to a template to support aten.min.dim
legalization
- Update end-to-end tests sets in xfail_sets.py
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Change-Id: I854dd6c0c55e570c1fb7242f20c85cf64d6e7fe0
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Follow up cleanup for [this
PR](https://github.com/llvm/torch-mlir/pull/3689), which introduced a
decomposition for `aten.fmod.Tensor`. This means that the lowering for
this operator in linalg is no longer needed.
Thanks to @vivekkhandelwal1 for pointing this out.
---------
Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
Bump forward and refactor inline global slots to no longer track via
symlinks. This appears to make the tests past until we manage to remove
torchscript work.
Enabled mask and is_causal parameters for torch.aten.scaled_dot_product
attention + relevant comments + tests.
The tests added highlight the new capabilities introduced in this PR,
including:
Attention with F16 mask
Attention with Boolean mask
Causal attention with same Q K V shapes
Causal attention without Q K V shapes
Made sure that one cannot input both mask and is_causal.
As titled, create a new decomposition for `aten.fmod.Tensor` to
`aten.div`, `aten.trunc`, `aten.mul` and `aten.sub`. Note that we only
use `aten.trunc` for floating point operations. This further gets
decomposed to `aten.where` etc. by other existing decompositions.
This decomposition now makes TOSA pass for a simple model with
`aten.fmod` while it makes `stablehlo` fail. For now, we disallow this
decomposition for `stablehlo`
---------
Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
The lowering pattern for `aten.T` uses transposition implemented via
`linalg.generic`. For downstream passes it is advantageous to use named
ops wherever possible, so this patch changes the lowering to use
`linalg.transpose` instead.
Addresses an issue in <https://github.com/llvm/torch-mlir/issues/3651>
where some unflatten ops generated from onnx models weren't propagating
static shape information. It may be necessary to add further
optimizations for the more general case when some static information is
present in the unflatten (or possibly reshape/view) op's `sizes` list,
but not reflected in the output shape. These ops will only successfully
infer shapes if the `sizes` list is gotten from a list of constant ints
(with possibly one -1). A common example where this fails is when some
of the `sizes` are determined from `aten.size.int` ops on dynamic
tensors, and other `sizes` are known statically.
This PR includes:
- a canonicalizer for `aten.unflatten.int` which converts to
`aten.unsqueeze` when it is expanding one dim to two, and one of the new
dims is statically 1.
- an improvement to the folder for `aten.__or__.bool` which does not
rely on *both* operands being static.
This PR add `floordiv` to the `PY_BUILTIN_TO_TORCH_OP`. For
`aten.mul.int` and `aten.floordiv.int` ops, we add new Canonicalization
Patterns as follow:
```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.mul.int %1, %const-6
```
Will be replaced by
`torch.aten.mul.int %input, %const-30`
And
```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.floordiv.int %1, %const-5
```
Will directly return `%input`
This PR also relaxes the `float` type constraint in TorchToTosa for the
`AtenRsubScalarOp` conversion.
To test:
`cmake --build build --target check-torch-mlir-all`
Supports the result with dynamic shape and scalar indices like
```
func.func @test_gather_scalar(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[], si64>) -> !torch.vtensor<[?,?],f32> attributes {torch.onnx_meta.opset_version = 13 : si64} {
%0 = torch.operator "onnx.Gather"(%arg0, %arg1) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[], si64>) -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
```
`Torch::AtenSqueezeOp` is referring to the result shape, so it will
failed on lowering if the result shape is dynamic.
The current implementation uses a `linalg.generic` to broadcast the bias
tensor for the lowering of convolutions. This is suboptimal for later
pattern matching. This patch changes it to use the respective named op,
`linalg.broadcast`, instead.