Commit Graph

93 Commits (7cd3368b206bbcfb9cf272bfa7e532e60f574fc8)

Author SHA1 Message Date
Xinyu Yang 431d98b405
[Stablehlo] Add lowering of GridSampler Op (#3084)
Inspired by PyTorch decompositions.py.
See
ec58f1f74e/torch/_decomp/decompositions.py (L3923-L4086)
Only support paddingMode=0 or 1 and interpolationMode=0 or 1
2024-06-07 16:06:07 +08:00
Yuanqiang Liu 50f7103098
[Stablehlo] support uint8 (#3367)
Support lowering unsigned integer type to stablehlo as discussed in
https://github.com/llvm/torch-mlir/pull/2184.

The things I do in this PR:
1. create `setupBackendTypeConversionForStablehlo()`,
`createFuncBackendTypeConversionForStablehloPass` and
`createFinalizingBackendTypeConversionForStablehloPass`.
2. remove `InferTypeOpInterface` from `torch_c.to_builtin_tensor`,
because it's different result type between linalg backend and stablehlo
backend:
```
// linalg backend
func.func @forward(%arg0: !torch.vtensor<[3],ui8>) -> tensor<3xf32> {
    %c = torch_c.to_builtin_tensor %arg0 : (!torch.vtensor<[3], ui8> -> tensor<3xi8>
    %0 = tensor.empty() : tensor<3xf32>
    %1 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%arg0 : tensor<3xi8>) outs(%0 : tensor<3xf32>) {
    ^bb0(%in: i8, %out: f32):
      %2 = arith.uitofp %in : i8 to f32
      linalg.yield %2 : f32
    } -> tensor<3xf32>
    return %1 : tensor<3xf32>
}
// stablehlo backend
func.func @forward(%arg0: !torch.vtensor<[3],ui8>) -> tensor<3xf32> {
    %c = torch_c.to_builtin_tensor %arg0 : (!torch.vtensor<[3], ui8> -> tensor<3xui8>
    %0 = stablehlo.convert %arg0 : (tensor<3xui8> -> tensor<3xf32>
    return %0 : tensor<3xf32>
}
```
3. fix stablehlo and linalg's conversion
2024-06-04 09:04:59 +08:00
Xinyu Yang 23b53050de
[Torch]Support conv_transpose1d and conv_transpose3d (#3286)
1. Support conv_transpose1d and conv_transpose3d
2. Fix bugs of convertTransposedConv func in
lib/Conversion/TorchToStablehlo/Linear.cpp
2024-06-03 15:11:12 +08:00
Rob Suderman afca88a058
[NFC] Change to *cast instead of .*cast variants (#3405)
Member casts have been deprecated. Changing over a bunch of the member
cast calls to the global templated variants to remove deprecation
warnings.
2024-05-30 23:45:13 -07:00
penguin_wwy 1f544c37d0
[NFC] Remove unused header files (#3386) 2024-05-30 14:30:36 +08:00
Yuanqiang Liu 28aeb047c1
[Stablehlo] fix crashing on AtenEmbeddingBagSumExample_basic (#3389) 2024-05-26 12:34:56 +08:00
Yuanqiang Liu 5bb1a65ec9
[Stablehlo] refactor reduction lowering and support aten.amin (#3383)
* implement detailed lowering template pattern
`ConvertAtenReduceAllDimsOp` and `ConvertAtenReduceKeepDimOp`
* support `aten.amin`'s lowering.
2024-05-23 20:40:20 +08:00
Yuanqiang Liu f4bfe3f948
Bump llvm and stablehlo (#3377)
* bump llvm to 1e5f29af81a5f6fda308074f6345b9fba4faa71c
* bump stablehlo to c44d9af8d4879adccf1054cb61a53377ae5898cb
2024-05-22 23:28:45 +08:00
Wu Yuan cc28d566ff
[Stablehlo] Support AtenTrilOp (#3359)
1. lower aten.tril to stablehlo composed by iota, select and so forth
2. add related e2e test cases
2024-05-20 15:49:24 +08:00
Xinyu Yang 28193fd985
[Stablehlo]index type use i64 (#3354) 2024-05-16 15:33:23 +08:00
Yuanqiang Liu 5928f68e60
[Stablehlo] refactor amax, max, max.dim's lowering to stablehlo (#3348)
* not to decompose `aten.amax` on `stablehlo` backend. Because it could
be lowering to `stablehlo.reduce` directly.
* lowering `aten.max.dim` to `stablehlo.reduce apply max` when
`AtenMaxDimOp.getIndices()` doesn't have users. It's more simple.
2024-05-16 00:05:19 +08:00
Yuanqiang Liu 0b7cbf5e60
[Stablehlo] fix aten.randn's lowering with f32 element type (#3329) 2024-05-11 17:40:04 +08:00
Yuanqiang Liu 5f7cb9e253
[Stablehlo] lowering aten.randn & aten.normal_functional to mhlo.rng … (#3328)
…NORMAL

* split lowering of uniform, randn, normal from Basic.cpp into Rng.cpp
2024-05-11 15:33:37 +08:00
penguin_wwy e0a87e543e
[NFC] Standardize the std::is_same competime expression (#3321) 2024-05-10 17:07:37 +08:00
penguin_wwy afe87d62b4
[Linalg] [Stablehlo] Promote type for compare scalar op (#3306) 2024-05-10 02:20:06 +08:00
Yuanqiang Liu 5213557b87
[Stablehlo] fix lowering gelu(x, tanh) (#3307)
* lowering gelu("none") to erf
* lowering gelu("tanh") to tanh
2024-05-09 11:39:13 +08:00
Xinyu Yang f32ada993d
[Stablehlo] Improve the lowering of pool op in stablehlo (#3259)
1. Handle case stride == None
2. add avgpool3d maxpool1d  maxpool3d lowering
2024-05-01 00:06:13 +08:00
Xinyu Yang 0a5ff68d9d
[stablehlo] Support PrimsCollapseOp and PrimsSplitDimOp in stablehlo (#3230) 2024-04-29 17:40:30 +08:00
Stella Laurenzo 5d4b803914 [NFC reformat] Run pre-commit on all files and format misc.
This is part 1 of ~3, formatting all miscellaneous text files and CPP files matched by a first run of pre-commit. These tend to be low change-traffic and are likely not disruptive.

Subsequent patches will format Python files and remaining CPP files.
2024-04-27 14:08:09 -07:00
penguin_wwy 6679728c56
Fix deprecated uses of cast/dyn_cast/dyn_cast_or_null/isa (#3243)
Like #3130, gradually replace the deprecated code

https://github.com/llvm/mlir-www/blob/main/website/content/deprecation/_index.md#deprecated
2024-04-27 14:00:56 -07:00
Xinyu Yang ac85338491
[Stablehlo] Support AtenPowScalarOp, AtenTanOp, AtenAsinhOp, AtenAcoshOp, AtenAtanhOp, Atan2Op (#3233) 2024-04-26 15:47:44 +08:00
penguin_wwy 122eb69a98
[stablehlo] add aten left/right shift op conversion support (#3234) 2024-04-26 09:20:49 +08:00
Xinyu Yang 7030eacb76
[stablehlo] Support aten.any and aten.all lowering (#3217) 2024-04-25 11:15:52 +08:00
Xinyu Yang e18bf42d0e
[stablehlo] Support ConstantPadNdOp in stablehlo (#3211)
as title
2024-04-24 14:15:11 +08:00
Xinyu Yang 42b9eccdb3
[Stablehlo] Fix AtenSumDimIntListOp when dim==None (#3216)
as titile
2024-04-24 11:25:46 +08:00
Xinyu Yang 4da3d714cc
[Torch] Support AtenProdOp on linalg and stablehlo (#3215) 2024-04-24 11:14:04 +08:00
Yuanqiang Liu db3842f2e8
[Stablehlo] support lowering sinh & cosh to stablehlo (#3213) 2024-04-23 19:54:58 +08:00
Xinyu Yang c1967b607f
[Stablehlo] add AtenLog10Op, AtenLog2Op lowering to stablehlo (#3208) 2024-04-23 19:06:55 +08:00
Yuanqiang Liu 1f8123b5f0
[Stablehlo] support unary ops which promote to floating point (#3209)
* promote input to output element-type when lowering to stablehlo, so
that it could satisfy stablehlo's type constraints.
* split promote-to-fp unary ops from fp-only unary ops.
2024-04-23 17:57:12 +08:00
Yuanqiang Liu 797e4cd395
[Stablehlo] lowering asin, acos, atan (#3207)
* lowering asin, acos and atan to chlo ops.
2024-04-23 16:24:53 +08:00
penguin_wwy a60e84e5ee
[stablehlo] add aten.expm1 op conversion support (#3199) 2024-04-21 19:20:49 -07:00
penguin_wwy b6b01602d3
[stablehlo] add aten.fmod.Tensor op conversion support (#3198) 2024-04-21 08:39:36 +08:00
penguin_wwy ea0ecb67be
[stablehlo] add aten.remainder.Tensor op conversion support (#3197) 2024-04-21 00:03:37 +08:00
penguin_wwy 5a98c72c7f
[StableHLO] Fix aten.clamp.Tensor in FxImporter2StableHLO (#3190)
The FX importer will pass static shapes to the Torch dialect, so it
needs to generate a StableHLO that satisfies shape inference.
2024-04-19 17:08:29 +08:00
penguin_wwy 6c4f7deebb
[stablehlo] add aten.clamp.Tensor op conversion support (#3185) 2024-04-19 10:55:27 +08:00
Xinyu Yang d4313eed4a
[Torch] Add decomposition of RepeatInterleaveSelfInt Op (#3075)
Decomposition RepeatInterleaveSelfInt with following ops:
```python

def my_repeat_interleave(input, repeats, dim=None):
    if dim is None:
        # Flatten the input and then repeat
        return input.flatten().unsqueeze(-1).tile((1, repeats)).flatten()
    else:
        # Calculate the shape after repeat
        expanded_shape = list(input.shape)
        expanded_shape[dim] *= repeats
        # Repeat the tensor along the specified dimension
        repeat_shape = [1] * (input.dim() + 1)
        repeat_shape[dim + 1] = repeats
        input = input.unsqueeze(-1)

        # Tile and then reshape
        tiled = torch.tile(input, repeat_shape)
        # Rearrange and reshape
        repeated = tiled.reshape(*expanded_shape)
    return repeated

```

I passed the tests of stablehlo and linalg. When testing onnx, strange
things happened.
In torch-mlir's CI **torch_nightly** and my own
environment(torch==2.4.0.dev20240318+cpu), it can **pass the pass**.
In torch-mlir's CI  **torch_stable**, it **failed**.
The test case is `RepeatInterleaveSelfIntNoDimModule_basic`, the result
shape should be [120].
```python
class RepeatInterleaveSelfIntNoDimModule(torch.nn.Module):

    def __init__(self):
        super().__init__()

    @export
    @annotate_args([
        None,
        ([3, 4, 5], torch.float32, True),
    ])
    def forward(self, x):
        return x.repeat_interleave(2)


@register_test_case(module_factory=lambda: RepeatInterleaveSelfIntNoDimModule())
def RepeatInterleaveSelfIntNoDimModule_basic(module, tu: TestUtils):
    module.forward(tu.rand(3, 4, 5))
```
The error log is as follows:
```
  Unexpected outcome summary: (onnx)
  
  ****** Failed tests - 1 tests
      FAIL - "RepeatInterleaveSelfIntNoDimModule_basic"
          @ trace item #0 - call to "forward"
          @ output of call to "forward"
          ERROR: shape (torch.Size([6, 4, 5])) is not equal to golden shape (torch.Size([120]))
```

@rsuderman 
Would you please help me check what's wrong with my PR? Thanks a lot.
2024-04-18 06:27:51 +08:00
Xinyu Yang ae4724763a
[Stablehlo] Enhance broadcast pattern in matmul Ops (#3161)
To pass test "MatmulStaticBroadcast_basic" in stablehlo:
```python
class MatmulStaticBroadcast(torch.nn.Module):
    def __init__(self):
        super().__init__()

    @export
    @annotate_args([
        None,
        ([4, 1, 6, 7], torch.float32, True),
        ([8, 1, 5, 7, 6], torch.float32, True),
    ])
    def forward(self, lhs, rhs):
        return torch.matmul(lhs, rhs)


@register_test_case(module_factory=lambda: MatmulStaticBroadcast())
def MatmulStaticBroadcast_basic(module, tu: TestUtils):
    module.forward(tu.rand(4, 1, 6, 7), tu.rand(8, 1, 5, 7, 6))
```
2024-04-16 10:10:36 +08:00
IanWood1 5708ee7ec9
Added 2 Ops: Floor divide scalar and Floor divide scalar mode (#3156)
- Added linalg lowering for `AtenFloorDivideScalarOp`
  - Needed `AtenDivScalarModeOp` for the decomp.
- Added linalg lowering for `AtenDivScalarModeOp`
- Moved linalg payload logic to `createDivModePayload()` since the logic
was nearly identical for both `AtenDivScalarModeOp` and
`AtenDivTensorModeOp`. Just a template function
 -  Added `AtenDivScalarModeOp` lowering for stablehlo
 

Pytorch's
[`torch.floor_divide()`](https://pytorch.org/docs/stable/generated/torch.floor_divide.html)
in a previous version (for a reason unknown to me) preformed a
truncation instead of "floor". The already implemented op
`AtenFloorDivideTensorOp` was done before this change. However, this
wasn't caught because our testcases only tested positive floor division.
I changed this to floor as well as adding a few test cases.
2024-04-15 13:45:10 -07:00
penguin_wwy d4a30b7e67
Fix deprecated uses of cast/dyn_cast/dyn_cast_or_null/isa (#3130)
We should prefer functional style as the method style is deprecated
https://github.com/llvm/mlir-www/blob/main/website/content/deprecation/_index.md#deprecated
(https://mlir.llvm.org/deprecation/)
2024-04-11 06:47:35 -07:00
Yuanqiang Liu 88533b1968
[Stablehlo] fix aten.arange's lowering to stablehlo (#3138)
* promote to f64 to do division, avoid division on i64 (floor div)
* refactor torch-to-stablehlo-pipeline
2024-04-11 15:55:56 +08:00
Yuanqiang Liu 8d5e2578b0
[Stablehlo] lowering aten.view to shape.num_elements + stablehlo.comp… (#3125)
…ute_reshape_shape

as that `aten.view` support at most one `-1` in dim list. The original
calculation of `numel` is wrong when there is a `-1` in dim list.
2024-04-09 14:54:57 +08:00
Xinyu Yang 84c24e5771
[Torch] Support Aten__And__ScalarOp (#3114) 2024-04-08 20:24:17 +08:00
Yuanqiang Liu 498ab997cd
[Stablehlo] lowering aten.log1p to stablehlo.log_plus_one (#3110) 2024-04-07 17:01:58 +08:00
Xinyu Yang ac1cd3d78a
[Torch] Support AtenDivTensorModeOp with static int input for linalg and stablehlo backend (#3088) 2024-04-02 17:28:53 +08:00
penguin_wwy b98f7f75dc
[stablehlo] Reduce unnecessary template specialization code (#3047) 2024-04-01 14:18:49 -07:00
Jiawei Wu 76080936d4
[stablehlo] add aten.index_put and aten.scatter_add op conversion support (#3086) 2024-04-01 19:39:49 +08:00
Yuanqiang Liu ad6159c7cb
[Stablehlo] lowering aten.round to stablehlo.round_nearest_even (#3011) 2024-03-12 08:58:20 +08:00
Yuanqiang Liu 916554f270
[Stablehlo] add torch_to_stablehlo::getBackendTypeForScalarType (#2975) 2024-03-04 23:31:54 +08:00
Yuanqiang Liu f3e8199a6d
[Stablehlo] add refbackend (#2712) 2024-02-16 01:08:48 +08:00
Sambhav Jain 8a17c98b74
Bump stablehlo to openxla/stablehlo@fd52182f76 (#2821)
With the recent LLVM integrate and changes from
https://github.com/llvm/llvm-project/pull/78260, we hit this build error
in Stablehlo (which is quite old).
```
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1020:14: error: no member named 'startRootUpdate' in 'mlir::PatternRewriter'
    rewriter.startRootUpdate(op);
    ~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1026:16: error: no member named 'finalizeRootUpdate' in 'mlir::PatternRewriter'
      rewriter.finalizeRootUpdate(op);
      ~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1029:16: error: no member named 'cancelRootUpdate' in 'mlir::PatternRewriter'
      rewriter.cancelRootUpdate(op);
      ~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1108:14: error: no member named 'updateRootInPlace' in 'mlir::PatternRewriter'
    rewriter.updateRootInPlace(op->getParentOp(), [&]() { return; });
    ~~~~~~~~ ^
4 errors generated.
Target @torch-mlir//:torch-mlir-opt failed to build
```

I'm still puzzled as to how this didn't fail with the CMake merge gating
CI (do we not test Stablehlo builds/tests?). In any case, bumping our
submodule to https://github.com/openxla/stablehlo/pull/1918 fixes it.

It exposes a new failing lit test in TorchToStablehlo though, that I
have looped stablehlo developers into
([here](https://discord.com/channels/999073994483433573/999074539138990131/1201235845391331419)).
```
bazel run @torch-mlir//test/Conversion:TorchToStablehlo/scatter.mlir.test 

...external/torch-mlir/test/Conversion/TorchToStablehlo/scatter.mlir
within split at <stdin>:1 offset :33:8: error: unexpected error: Expects non-empty reduction block for type inference                                                                               
  %0 = torch.aten.scatter.src %arg0, %int0, %arg1, %arg2 : !torch.vtensor<[?,?],si64>, !torch.int, !torch.vtensor<[?,?],si64>, !torch.vtensor<[?,?],si64> -> !torch.vtensor<[?,?],si64>             
       ^                                                                                                                                                                                            
LLVM ERROR: Failed to infer result type(s).               
```

Bazel CI:
https://github.com/sjain-stanford/torch-mlir/actions/runs/7732673480/job/21083102228
2024-01-31 14:21:17 -08:00