Commit Graph

411 Commits (82819350e1f8fbacca6f477ee367729365cc6ea3)

Author SHA1 Message Date
Vivek Khandelwal 98747d09a8 [MLIR][TORCH] Add support for prims::view_of op
This op does nothing and just returns the input operand as the
result of the op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-04-11 07:58:10 +05:30
Vivek Khandelwal 2213ce0855 [TorchDynamo] Add aten.squeeze op to the decomposition list
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-04-06 22:21:25 +05:30
Vivek Khandelwal e90ea3d7ab [MLIR][TORCH] Extend implementation of aten._index_put_impl op.
This commits adds the support for cases for index_put_op:
1.) where index is a 2-d tensor.
2.) where indices is a list of tensors and none, with exactly
2 non none tensors along the consecutive dimensions.

This commit also adds a utility to compute the broadcast shape
given the two input tensors.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-04-05 14:04:30 +05:30
Vivek Khandelwal 788efc3180 [MLIR][TORCH] Add support for non-unit stride for conv backward
This commit also adds the support for non-unit output padding in the
case of transposed convolution.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2023-04-04 17:53:27 +05:30
Vivek Khandelwal 5e9582b055 [MLIR][TORCH] Add e2e support aten.movedim.int op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2023-04-04 17:53:27 +05:30
Vivek Khandelwal 82fb9c7fb8 [MLIR][TORCH] Add decomposition for prims::squeeze op
This commit adds the decomposition for the prims.squeeze op.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2023-04-01 21:45:58 +05:30
Chi_Liu 6bb9965a41
[TOSA] Add support for AtenZerosOp 0/strided layout (#1983) 2023-03-30 07:08:20 -07:00
Michael Feliz 2389729fb9
Add support for aten_remainder in TorchToTosa (#1966) 2023-03-23 17:55:58 -07:00
Zhekun Zhang 5758a0bfbb
[StableHLO] Support for slice_scatter (#1960)
Co-authored-by: zhekun.zhang <zhekun.zhang@bytedance.com>
2023-03-22 13:41:04 -07:00
lisaliu1 d632afce31
Max pool2d ceil mode to tosa (#1957)
* implemented ceil_mode== true support for lowering aten.max_pool2d to tosa
* add e2e test for lowering aten.max_pool2d to tosa with ceil_mode=true

---------

Co-authored-by: Lisa Liu <lingl@xilinx.com>
2023-03-21 10:17:39 -07:00
Yuanqiang Liu 3698a95586
[MHLO] add conversion for aten.linalg_vector_norm (#1850) 2023-03-20 14:14:27 -07:00
lisaliu1 7d711b9f9f
Constant pad nd to tosa (#1933)
* implemented lowering torch.aten.constant_pad_nd to tosa
* add constant_pad_nd e2e tests to TOSA_PASS_SET
* add PadModule_basic & PadWithNoneValModule_basic to TOSA_PASS_SET
---------

Co-authored-by: Lisa Liu <lingl@xilinx.com>
2023-03-15 08:42:15 -07:00
Jiahao Li 4912c3937d
Support aten.stack op and decompose it into unsqueeze & cat (#1747) 2023-03-11 09:25:25 +08:00
gpetters94 66b1045a80
Add a new RecomposeComplexOps pass, fold slice+copy_ into indeX_put_ (#1901) 2023-03-10 16:42:11 -05:00
Ziheng Jiang dca2b8a40a
[TORCH] Improve type refinement for aten.cat. (#1908)
* [TORCH] Fix type refinement for aten.cat.

* Add test.

* Address comments.

* Update.

* Update.

* Update.

* Update.

* Update.

---------

Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2023-03-09 16:17:35 -08:00
Zhekun Zhang 1d3a7419c5
[Torch Dialect] add RSub, ScalarImplicit canonicalize (#1899)
* add rsub, scalarimplit canonicalizer

* reformat

* address comments

* fix bug

* fix test

* Update elementwise.py

* resolve merge conflict

* change to 3

* change to 3

* real fix

* fix name

* add torchdynamo fail test

---------

Co-authored-by: zhekun.zhang <zhekun.zhang@bytedance.com>
2023-03-06 17:38:27 -08:00
Priya Savithiri c2ef5f4165
Add HardtanhBackward TOSA and LINALG support (#1721) 2023-03-06 10:16:37 -08:00
Ramiro Leal-Cavazos 671be048fe
Fix handling of non-int tensors in `getScalarValue` (#1914)
The current implementation of `getScalarValue` does not check that the
input to a `ValueTensorLiteralOp` is an i64 before extracting the
value, and it does not check that the result type of the
`PrimNumToTensorScalarOp` is also an i64. This leads to crashes or
invalid IR generated when the `input` is something other than an i64
tensor or `!torch.int`.

This commit addresses those issues. In addition, the function
`getScalarValue` is renamed to `getScalarIntValue` to make it clear
that it *only* extracts scalar integers.
2023-03-06 10:12:58 -08:00
Yuanqiang Liu 7a8304f935
[Torch Dialect] add folder for aten.sub.float (#1871) 2023-03-02 09:07:33 -08:00
Vivek Khandelwal a32840ffd7 build: manually update PyTorch version
Set PyTorch and TorchVision version to nightly release 2023-02-27.
This commit also adds the lowering for aten.add and aten.Float.Scalar op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-02-28 22:43:39 +05:30
Gaurav Shukla 0afb85d45f build: update llvm tag to 5e111eb275
- Update llvm tag to 5e111eb275eee3bec1123b4b85606328017e5ee5
- mhlo now points to a99159c45ee5c497f8dce01eff807a6d57629b61

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-23 22:57:17 +05:30
Vivek Khandelwal 6a3438f672 build: manually update PyTorch version
Set PyTorch and TorchVision version to nightly release 2023-02-20.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-02-23 11:33:41 +05:30
Ziheng Jiang 38ed559398
[StableHLO] Add support for AtenPowTensorScalar. (#1883)
* [MHLO] Add support for AtenPowTensorScalar.

* Update.

---------

Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2023-02-16 20:26:46 -08:00
Vivek Khandelwal b17d4d4f08
[MLIR][TORCH] Add decomposition for aten.bernoulli.p op (#1882)
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-02-15 22:36:29 +05:30
Vivek Khandelwal f6f2e4d040 [MLIR][TORCH] Add support for integer type input for max.dim op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-02-15 16:14:15 +05:30
Chi_Liu 8a7340dfb5
[TOSA] aten.index.tensor multiple indexes support (#1868) 2023-02-13 23:07:15 -08:00
Ziheng Jiang f1b8d5e581
[MHLO] Support AtenMaskedFillScalar (#1839)
* [MHLO] Support MaskedFillScalar.

* Update.

* Update.

* Update.

---------

Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2023-02-10 13:58:39 -08:00
Chi_Liu cc819e73dd
[TOSA] Fix broadcast_to input and output different shape support (#1855) 2023-02-09 09:15:14 -08:00
Vivek Khandelwal 282c4e027b build: manually update PyTorch version
Set PyTorch and TorchVision version to nightly release 2023-02-07.
Fixes https://github.com/llvm/torch-mlir/issues/1792.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-02-08 11:41:58 +05:30
Tanyo Kwok 3ebe5a5a67
build: update llvm tag to ba8b8a73f (#1856)
* build: update llvm tag to ba8b8a73f

* skip ConvolutionModule2DGroups_basic
2023-02-07 23:25:59 +08:00
Vivek Khandelwal 3e60e6021f build: manually update PyTorch version
Set PyTorch and TorchVision version to nightly release 2023-02-06.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-02-07 12:02:18 +05:30
Yuanqiang Liu 089018b658
[MHLO] move AtenTanhOp to ConvertAtenUnaryFPOnlyPatten and add sin/cos/ceil/floor pattern (#1847) 2023-02-06 11:14:26 -08:00
Vivek Khandelwal c957cebd03 build: manually update PyTorch version
Set PyTorch and TorchVision version to nightly release 2023-02-05.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-02-06 13:23:28 +05:30
Jiahao Li f58ba19448
Add aten.bucketize op and its decomposition (#1834) 2023-02-03 10:20:47 +08:00
Ashay Rane 711646d095
mhlo: migrate conversion to stablehlo (#1840)
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.

This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
2023-02-02 07:29:47 -06:00
Vivek Khandelwal ed9d8d1fb7 [MLIR][TORCH] Add support for clone op with channels last memory format
Fixes https://github.com/llvm/torch-mlir/issues/1829

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-02-02 16:04:42 +05:30
Jiahao Li f5b689e12f
[MHLO] Support aten.cumsum op in mhlo backend (#1825) 2023-01-29 21:38:27 -08:00
Chi_Liu c5ac42a198
[TOSA] Add aten.view shape -1 support (#1815) 2023-01-20 11:56:26 -08:00
Chi_Liu 2587b3f583
[TOSA] Add aten.Index.Tensor support (#1771) 2023-01-19 21:19:00 -08:00
Vivek Khandelwal abf4f207cd [MLIR][TORCH] Add canonicalizer for aten.new_empty_strided op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2023-01-19 13:37:32 +05:30
Vivek Khandelwal f9d59eb500 [MLIR][TORCH] Add decomposition for aten.randn_like op
This commit decomposes aten.randn_like op into aten.randn.generator op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-01-18 12:09:27 +05:30
Jiahao Li e2698433db
Fix empty tensor when select -1 (#1787) 2023-01-17 10:14:14 -08:00
Vivek Khandelwal 924503c436 build: manually update PyTorch version
Set PyTorch and TorchVision version to nightly release 2023-01-15.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-01-16 13:07:57 +05:30
Jiahao Li 4f94831fed
[LINALG][TOSA][MHLO] Add e2e support for aten bitwise ops (#1753) 2023-01-11 14:40:03 -08:00
Vivek Khandelwal fd236b2c89 [MLIR][TORCH] Add decomposition for prims.var and prims.sqrt op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-01-11 17:39:10 +05:30
Ashay Rane 4e4a571104
[TOSA] Add LeakyReLU conversion pass (#1790)
* feat(TorchToTOSA): LeakyReLU legalization

* test(LeakyReLU): Add LIT test and enable e2e test

Co-authored-by: Philipp Braun <philipp.braun@amd.com>
2023-01-10 21:42:07 -08:00
Gleb Kazantaev 8f01072099
Fix OptionalCType class name (#1779)
* Fix OptionalCType class name

* Rmove LTC xfail tests
2023-01-06 17:03:24 -05:00
Jiahao Li 8dc5d985eb
Add e2e support for aten logical or/and/xor/not ops (#1761) 2023-01-03 18:11:25 -08:00
Srirammaswamy a88e3766e8
Add E2E support for LeakyRelu and LeakyReluBackward ops (#1733)
Co-authored-by: srirammaswamy <srirammaswamy@gmail.com>
2023-01-03 08:30:16 -08:00
powderluv b2dbbba5e6
xfail ElementwisePreluModule_basic in dynamo (#1763) 2022-12-31 13:54:25 -08:00
Ashay Rane ac780529b4
Revert e2e support for aten logical or/and/xor/not ops (#1757)
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked.  Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result.  This patch reverts the
commit to make the post-merge builds green again.
2022-12-29 21:01:06 -06:00
Shivam Gupta 2f45959f0d
Prelu lowering to linalg (#1712)
Prelu lowering to linalg
2022-12-28 08:51:33 +05:30
Jiahao Li eaab9be207
Add e2e support for aten logical or/and/xor/not ops (#1752) 2022-12-26 10:23:38 +08:00
Jiahao Li 49071f86e6
[MHLO] Evaluate RuntimeAssertOp at compile time (#1732) 2022-12-22 17:12:52 +08:00
Jiahao Li 60a139271d
Add aten.std.correction op and its decomposition (#1731) 2022-12-21 21:02:40 -08:00
Jiahao Li 15b249777b
[Torch][MHLO] Decompose aten.copy op. Lower aten.rsqrt & sigmoid to mhlo. (#1734) 2022-12-22 10:13:59 +08:00
Chi_Liu 9dc09ac8c5
[TOSA] Add aten.gather support for tosa (#1680) 2022-12-21 11:04:07 -08:00
Chi_Liu b2cefc0b64
[TOSA] Add aten.masked_fill.Tensor/Scalar support (#1735) 2022-12-21 08:56:07 -08:00
pranavmulticore 0f6008c802
Added GeluBackward: MHLO support (#1725) 2022-12-21 20:09:43 +08:00
Abhishek Varma 66d7a412cb [RefineTypes] Fix knowledge dtype for `aten.embedding` op
-- The dtype of the result of `aten.embedding` should match that of
   the `weight` operand's (operand[0]) instead of hardcoding to f32.
-- This commit aims to provide a fix for the same.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2022-12-20 19:56:12 +05:30
Ashay Rane dd1cf578a6
build: fix LTC code after upstream PyTorch change (#1727)
pytorch/pytorch@140a3139 reverted a change from yesterday, causing the
RollPyTorch action to break.  This patch reverts the corresponding
change in the torch-mlir LTC code.

This patch also re-enables tests that were previously marked as XFAIL.
2022-12-16 13:07:38 -06:00
Prashant Kumar 564403e3a1 Add float16 support in the refbackend.
This will require https://reviews.llvm.org/D139121 patch to go through.
2022-12-15 21:19:52 +05:30
Sean Silva af9e8a5e63 [torchdynamo] Move to aot_autograd instead of raw make_fx
As [@ezyang suggested](https://github.com/pytorch/pytorch/issues/90276#issuecomment-1339791275),
use `torch._dynamo.optimizations.training.aot_autograd` instead of raw
`make_fx`. This is more future proof and gives us the backward pass and
functionalization. We don't currently get functionalization because of
https://github.com/pytorch/pytorch/issues/90759

This also incidentally fixes the source location handling, which makes
`lockstep_basic.py` give an accurate source location!
2022-12-15 01:55:50 -08:00
Chi_Liu 163d19cce6
[TOSA] Add aten.add/sub.Scalar/Tensor si64 type support (#1604) 2022-12-12 12:13:07 -08:00
Sean Silva a595942033 [cleanup] Use `"` instead of `'` for string literals
This is the more predominant style in the codebase. I'm sure there are
more in other parts of the codebase but it's hard to search/replace.
2022-12-12 02:40:09 -08:00
Vivek Khandelwal d4862ec611 [MLIR][TORCH] Add e2e support for aten.var_mean op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-12-12 15:46:54 +05:30
Vivek Khandelwal 143a8f378d build: manually update PyTorch version
Set PyTorch and TorchVision version to nightly release 2022-12-11.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-12-12 15:46:54 +05:30
Sean Silva 7731211d02 Remove eager_mode
This was an experimental attempt at rolling out own op-by-op executor
with `__torch_dispatch__`, but it proved difficult to make it robust.
Op-by-op execution is very easy to implement robustly now with the
PyTorch 2.0 stack, so we don't need eager_mode.

Downstream users were using eager_mode to implement lockstep numerical
accuracy debuggers. We implemented the same functionality with
TorchDynamo in https://github.com/llvm/torch-mlir/pull/1681 so now there
is not much reason to continue maintaining it.
2022-12-09 03:50:00 -08:00
Sean Silva 29c8823464 [e2e tests] Rename default config from "refbackend" to "linalg"
This more accurately reflects what it is. The previous name was
conflating the use of RefBackend (which `linalg`, `tosa`, and `mhlo`
configs all use) with the use of the linalg backend (e.g. TorchToLinalg).

This conflation was artifically giving the linalg backend a "privileged"
position, which we want to avoid. We still keep it as the default
backend, and it remains the most complete, but at least there's not
artificial boosting.
2022-12-08 01:34:46 -08:00
Sean Silva 88db99946b [torchdynamo] Use decompositions to support a few ops 2022-12-01 11:25:20 -08:00
Ramiro Leal-Cavazos b4b92c990e
Replace LCG algorithm with squares64 algorithm in AtenUniformOp (#1633)
This commit replaces the LCG algorithm that was being used by the
`TorchToLinalg` lowering of `AtenUniformOp` to generate random numbers
with the `squares64` algorithm, for the LCG algorithm was producing
tensors that were highly correlated with one another.

Squares64 algorithm: https://arxiv.org/abs/2004.06278

Closes https://github.com/llvm/torch-mlir/issues/1608
2022-12-01 08:30:10 -08:00
Abhishek Varma c27c1791f1 [MLIR][TORCH] Add e2e support for `aten.amax` op
-- This commit adds e2e support for `atend.amax` op.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2022-11-30 17:54:37 +05:30
Ramiro Leal-Cavazos a8cbfff95b
Reduce memory usage of e2e tests by reducing input sizes (#1653)
There are a few e2e tests that take several very large tensors as
input, which leads to the e2e test suite leaking too much
memory. Running things locally resulted in a total memory usage of
12.5 GB when running the suite sequentially on the refbackend.

Many of the tests that take large tensors don't actually need
such large tensors to pass, and some that take several large tensors
as input are just doing the same thing multiple times. This commit
reduces the size of some of the tensors and removes repetitive parts
of tests to reduce the memory usage to a total of 3 GB.
2022-11-29 10:03:36 -08:00
Vivek Khandelwal 4d49c44967 build: manually update PyTorch version
Set PyTorch and TorchVision version to nightly release 2022-11-22.
Add failing tests to the xfail set.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-29 20:33:27 +05:30
Sean Silva f4d4743f08 Fix eager mode XFAIL's 2022-11-29 01:46:29 -08:00
Sean Silva ecb09c2fc3 [torchdynamo] Fix output size computation for upsample_nearest2d 2022-11-29 01:46:29 -08:00
Sean Silva 883b986eda [torchdynamo] Annotate the XFAIL's with more info 2022-11-29 01:46:29 -08:00
Sean Silva a24c7039f7 [torchdynamo] Update XFAIL sets with upstream bug numbers. 2022-11-25 08:45:23 -08:00
Vivek Khandelwal b3f68dfef3 Update xfail_sets.py 2022-11-25 12:41:56 +05:30
Vivek Khandelwal d9cbf01d1e Revert "build: update llvm tag to 147fe9de"
This reverts commit e45ad313d4.
2022-11-25 12:41:56 +05:30
Sean Silva 28957adaac [torchdynamo] Initial TorchDynamo support
This adds a basic e2e Config for TorchDynamo using
Linalg-on-Tensors/RefBackend.
But TorchDynamo is pretty orthogonal to
various other pieces, so it should compose nicely with variations like:
- Switching out all the backends (Linalg-on-Tensors, TOSA, MHLO)
- PyTorch functionalization and decompositions
- Taking the example inputs and compiling with all dynamic or all static
  shapes without duplicating tests.

This adds it to the CI, but there are still a lot of XFAIL's.

This also adds a helper `from torch_mlir.dynamo import
make_simple_dynamo_backend` which simplifies some of the steps for
making a Torch-MLIR-based TorchDynamo backend. We include "simple" in
the name because we are going to be exploring various things next from
the long-term roadmap.

The next steps are:
- Burn down all the XFAIL's.
- Start working on the pieces from the [long-term roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/long_term_roadmap.md).
  - Add functionalization/decompositions into the TorchDynamo flow and
    remove reliance on the current Torch-MLIR "frontend".
  - Write a pure-Python direct FX->MLIR importer.
  - Hook up the new PyTorch symbolic shape stuff.
  - Explore PrimTorch decompositions for simplifying backends.
2022-11-24 04:10:25 -08:00
Vivek Khandelwal e45ad313d4 build: update llvm tag to 147fe9de
Summary of changes:
- Update call to `hasNoEffect` utility
- `KDynamicSize` value changed to
  `std::numeric_limits<int64_t>::min()` from `-1`
- Update tags
  llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
  mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-24 12:44:43 +05:30
Tanyo Kwok 14f1260ac4
Add more mhlo basic converters (#1628)
* Add more mhlo basic converters

* remove unused pinnedMemory constraints

* refine naming
2022-11-24 14:28:34 +08:00
Maksim Levental bfcfd60d55
[MLIR][TORCH] Refix differentiable view (#1639)
* `BatchMlpLayerModule_basic` passes

* Fix https://github.com/llvm/torch-mlir/issues/1618 by stripping `requires_grad` from results of view ops.
2022-11-23 15:35:39 -06:00
Tanyo Kwok 4aad5ccf39
fix #1626 return type mismatch (#1634) 2022-11-23 15:02:41 +08:00
Vivek Khandelwal 68f568b704 [MLIR][TORCH] Add E2E support for prims.convert_element_type op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-22 09:36:36 +05:30
Sean Silva 22307a1427 Clean up some parts of the test suite
The purpose of the test suite is to accelerate the development of the
compiler. However, we had various tests there that were not expected to
work, had no in-progress work being tested by the test, and nobody was
actively working on them. Having such tests in our test suite just adds
clutter and slows down development on the compiler.
2022-11-21 06:14:31 -08:00
Tanyo Kwok a9fb0c5459
fix mhlo e2e ci crashes (#1620)
* fix mhlo e2e ci crashes

* add passed tests

* calc dynamic positive dim
2022-11-21 21:50:35 +08:00
Abhishek Varma 1d949f3ac2 [MLIR][TORCH] Fix aten.upsample_nearest2d op
-- aten.upsample_nearest2d.vec op is not present
   owing to https://github.com/pytorch/pytorch/pull/85638
-- So this commit adds a lowering on aten.upsample_nearest2d.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2022-11-18 13:41:47 +05:30
Vivek Khandelwal 5f7177da35 [MLIR][TORCH] Add decomposition for aten.var_mean.correction op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-17 13:00:09 +05:30
George Petterson 92f385bd9f [MLIR][TORCH] Add E2E support aten.convolution_backward op
This commit adds the decomposition for the `aten.convolution_backward`
and `aten.convolution_backward_overrideable` op.
2022-11-15 07:38:26 +05:30
Chi_Liu dfe7513a45
[MLIR][TORCH] Fix aten.unsqueeze op (#1578)
The range of the unsqueeze dim is: [-input.dim() - 1, input.dim() + 1), the bug forgets to add 1.
2022-11-14 09:09:15 -08:00
Gleb Kazantaev 6909eaf7fc
Update TorchMlirBackendImpl Methods (#1580)
* Fix LTC build

* Remove passing test from xfail set
2022-11-14 00:37:49 -05:00
Daniel Ellis a7ac0def45
Move single-tensor-tuple-return test to mlir unit test.
Also, add multiple return test.
2022-11-10 09:23:53 -05:00
Vivek Khandelwal fedf8c0640 [MLIR][TORCH] Add E2E support for aten.upsample_nearest2d_backward.vec op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-04 22:10:07 +05:30
Vivek Khandelwal c86177730d [MLIR][TORCH] Add E2E support for aten.fill.Tensor op
This commit adds the decomposition for `aten.fill.Tensor` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-10-30 18:40:47 +05:30
Vivek Khandelwal ea602127b6 [MLIR][TORCH] Add E2E support for aten.addcmul_ and aten.addcdiv_ op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-10-28 16:07:50 +05:30
Daniel Ellis 3e199aaf11
Add better error message for single-tensor tuple returns. 2022-10-25 12:48:55 -04:00
Vivek Khandelwal ca87033d2f [MLIR][TORCH] Add E2E support for aten.mse_loss op
This commit adds decomposition for the `aten.mse_loss` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-10-25 21:06:58 +05:30
Chi_Liu ad6f5848cb
[MLIR][TORCH] Add TorchToTosa lowering for aten.where.self op (#1454) 2022-10-18 09:39:39 -07:00