Commit Graph

2699 Commits (88533b1968267169b654611f13550e5d42e288c9)
 

Author SHA1 Message Date
Sean Silva 7b7f35744b [RefE2E] Add interesting control flow example.
This also required adding a lowering for ForOp in our tensor->memref
conversion.
2020-09-21 12:25:24 -07:00
Stella Laurenzo bc7c852379 Add more ops from the original integration.
* Still need to add a systematic mechanism for discovering gradient ops.
* Work needed on the various _ suffixed inplace ops.
* Other randoms still not mapped.
* Outside of this commit, I do have enough commented/reworked to roughly build but that will take another handful of commits to get going.
2020-09-18 19:11:18 -07:00
Sean Silva 276f5b80ea [RefE2E] Add assemblyFormat for TCF and TCP ops and tidy up. 2020-09-18 15:03:53 -07:00
Sean Silva dc8afc9271 [RefE2E] Refactor how tcf.add is lowered.
It was previously going through this awkward route that prematurely
created linalg.generic ops, which was an annoying layering problem since
we can't compute a shape transfer function for linalg.generic in the
general case. Now we pass it through the same path as tcp.matmul, with
the shape transfer function being defined for tcp.add.

This also removed the need for TCPToLinalg (now deleted). The equivalent
of that is happening in lower-shaped-results-to-memref. One interesting
outcome of this: we're basically using linalg as a "Buffer TCP". We
might want to look into using named structured ops for more of TCP, but
that would be a big velocity hit since then any change to the ODS /
verification for those ops would be a change to the upstream structured
op ODS generator. After we have more experience defining this manually,
we should re-evaluate rebasing TCP on generated named linalg ops.
2020-09-18 15:03:53 -07:00
Sean Silva d8675f8ad2 [RefE2E] Add support for matmul.
I'm pretty happy with how this turned out. It looks pretty much like it
should -- one change at each layer. This particular op bottoms out on
linalg which takes care of the rest.

- Add tcf.matmul
- Add tcp.matmul
- Add TCF->TCP lowering
- Add tcp.matmul shape transfer function (BypassShapes.cpp)
- Add tcp.matmul -> linalg.matmul lowering (LowerShapedResultsToMemref.cpp)
- Add support to LowerShapeConstraints for lowering the new
shape.cstr_require

This matmul op is pretty limited in its capabilities. There is no
batching and no multidimensional contraction. Certainly more design work
will be needed to find the right abstractions that aren't too general
but also help to canonicalize many cases from frontends. This is mainly
to show that adding a new op needn't be very "scary" once we have the
e2e infra in place.

Also,
- this clears out some exploratory cruft from the TCF dialect now that
this is starting to become real.
2020-09-18 11:31:01 -07:00
Sean Silva 62738d3641 [RefE2E] Fix nul-termination bug.
I was seeing some of the error messages come out with some garbage at
the end. This fixes it.
2020-09-18 11:31:01 -07:00
Sean Silva 2284f6b4f1 Bump llvm-project to 7c44651360dd94e17011fd1cd7ec3c755e0363b4
Date:   Thu Sep 17 18:16:41 2020 -0700
2020-09-18 11:31:01 -07:00
Sean Silva 7486befffd Fixes for run_lit.sh
- new build directory layout
- build NPCOMPNativePyExt, now that lit tests use it
2020-09-18 11:31:01 -07:00
Stella Laurenzo 361abebb51 Update README to reference published docker tag. 2020-09-16 23:12:05 -07:00
Stella Laurenzo 8ac29594df
Explicitly load aten and std dialects when constructing a context. (#47)
* This gets the pytorch frontend broadly working and what is left appears to be legitimate failures in 9 tests.
* Errors noted in #46
2020-09-16 23:06:22 -07:00
Stella Laurenzo 678989a321
Update docker, instructions and some fixes for the pytorch 1.3 build. (#45)
* Includes pybind11 directly (for some reason using the pytorch helper header for this depends on a source file not in the image).
* Installs nnpack into the image.
* Installs new-clang and LLD and configures environment to use it (otherwise, link time is terrible).
* Fixes a gcc compile error (in the off chance you build with default gcc compiler).
* Tests are failing based on some dialect registration stuff that must not have been factored correctly. Will followup with a fix.
2020-09-16 21:57:46 -07:00
Sean Silva 75f57b461e
Totally rework RefE2E tensor to memref flow. (#42)
This now gets the overall "RefE2E" compilation stack to a point that I'm
fairly happy with. We simplify it by mostly embracing the "descriptor"
view of the world.

The overall flow is best understood by reading through the
createE2ELoweringPipeline function in lib/E2E/E2E.cpp
That function creates a pass pipeline that lowers from "TCF" (which is
~numpy level of abstraction) down to LLVM IR.

A brief high-level summary of what happens there:

1. TCF to TCP conversion. This involves reifying error handling in the
form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir

2. Lowering shape constraints. This converts shape constraints into
eager error-handling code. See test/E2E/lower-shape-constraints.mlir
This pass will soon go upstream.
Because this lowers to std.assert, some later passes like
LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this
through e2e.
See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test
that properly aborts in case of an error.

3. Lowering tensors to memrefs. This is done via a series of passes
rather than an single mega conversion. Unlike the previous code that
mixed in the npcomprt ABI stuff here, it's now a very clean "pure
memref" conversion.
See test/E2E/lower-*-to-memref.mlir and
lib/E2E/TensorToMemref/
Most of the changes are concentrated here.

4. As part of the above, we use the upstream ConvertShapeToStandard for
lowering shapes.

5. We lower linalg to loops and lower loops to CFG using upstream
passes.

6. Rewrite the "ABI" boundaries of the program to npcomprt data
structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and
how global tensor constants are represented. One of the major
improvements in this commit is that now it's a very clean rewrite that
just replaces memrefs on ABI boundaries with !npcomprt.tensor (before
there was a get_extent function that is not needed).
See test/E2E/lower-to-npcomprt-abi.mlir

7. Lower to LLVM with upstream mlir patterns + some patterns for the
npcomprt lowerings.

One aspect here that is still a remnant of a non-descriptor-based tensor
to memref flow is the BypassShapes + LowerShapedResultsToMemref.
BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results
(basically a "tie_shape" kind of op), and then
LowerShapedResultsToMemref uses those annotations to allocate output
buffers while lowering the "tensor compute ops". Note that there are
very few "tensor compute" ops currently supported (tcp.add +
tcp.broadcast_to), so we just hardcode them in both passes.
Realistically, I expect this to go away as we fully embrace the
descriptor-based approach for simplicity, so don't look too deep into
it.
2020-09-16 17:31:40 -07:00
Stella Laurenzo a74a98094b
Add a new python script to auto-generate ATen op ODS definitions. (#43)
* Add a new python script to auto-generate ATen op ODS definitions.

* There is still some work on some of the ops to annotate correct types.
* The ODS is not actually included into the dialect yet, but I'd like to commit it so that we can track changes.
* Will reconcile this with the ops produced by the existing script in a followup. Still need to do some more iteration to reach parity.
2020-09-16 16:21:24 -07:00
Marius Brehler d62f8227c2
Bump LLVM to @7d1ed69 and fix namespace handling changed upstream.
* Bump LLVM to llvm/llvm-project@7d1ed69
* Bump MLIR-HLO to tensorflow/mlir-hlo@1880f87
* Adopt to MLIR's changed namespace handling
2020-09-16 15:52:15 -07:00
Stella Laurenzo dd9172fd75 Run clang-format on files that do not comply. 2020-09-15 17:54:58 -07:00
Sean Silva 0f9c6b4a35 Bump llvm-project to 84a6da67e6b2a76b15ad1862f4cbb7625fe318df
That commit is a Thu Sep 10 22:04:58 2020 -0700

That change is required for a PR that I'm going to make soon.
2020-09-14 15:56:01 -07:00
Marius Brehler 843448cde9 Register dialects in E2E passes 2020-09-11 09:33:44 +02:00
Marius Brehler a2fb68059f Remove unused include 2020-09-11 09:33:44 +02:00
Marius Brehler 124bc65a70 Register dialects in ATen lowering pass 2020-09-09 21:55:17 -07:00
Marius Brehler fb2d1a1559 Register dialects in conversion passes 2020-09-09 21:55:17 -07:00
Stella Laurenzo 81dd571c23 Integrate upstream LLVM at 8d9c13f37d2081c11186718ae8b5aef8b507d152.
* mlir-hlo: 062a3ac4a0671d15b5199ed2cd3a9ce02a5bf077

Fixes:

* numInputs() just returns an int instead of requiring a call to .getLimitedValue()
2020-09-08 20:34:31 -07:00
Stella Laurenzo 97d83f786a Bump submodule versions.
* llvm-project: b5924a8e27536d19dd5c4d302db29fb6163d5faa
* mhlo: 848ca244d20f045b7921da55a98a04d95ef94f0e
* Multiple breakages that need to be fixed.

Fixes:
* Refactor dialect registration
* Remove all kindof methods (Casting functionality has been added upstream and is implicitly
available, see https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types/1547.)
* Update dialect registration to comply with https://reviews.llvm.org/D85495.
* Remove type kinds and update some changed dialect signatures.
* Upgrade ATen dialect to match upstream needs.
  * Move dialect registration to tablegen.
  * Register the ListType in tablegen.
  * Change dialect initialization signature.
* Use TypeSwitch in MlirIr location printer.
* Remove global registry depends from npcomp-opt.
* Change LowerToLLVM to pass an MLIRContext vs an LLVMDialect for type creation.
* Remove dep on MLIREDSCInterface that is removed upstream.
* Thread through the DialectRegistry for opt and python-like tools.
* Modernize pass registration (This was forced because the GEN_PASS_REGISTRATION code now generates inline functions vs literal pass registration statements)

Co-authored-by: Marius Brehler <marius.brehler@iml.fraunhofer.de>
2020-09-08 13:26:42 -07:00
Stella Laurenzo 4c37aed841 Update build instructions to use the submodule for llvm.
* Previous instructions were referring to the option to use an external llvm-project checkout with a stale version hash.
2020-08-28 16:20:55 -07:00
Stella Laurenzo d1ed6d260e Initial work on a torch op registry.
* This extracts metadata from python invocations (nearly) sufficient to generate ODS and a Torch IR translation table for most of the ops.
* It also has the side effect of creating a data structure with meaningfully runnable examples suitable for an automated regression test.
* There are some ops that are sufficiently complex/weird (like _convolution) that we'll just manually handle those.
* See example output: https://gist.github.com/stellaraccident/60a58457b15e9184e224fa98a2658769
2020-08-28 15:20:55 -07:00
Stella Laurenzo fc4f374345 Format sources. 2020-08-27 14:47:49 -07:00
Stella Laurenzo de38caa547
Make code that depends on the legacy "type dispatch" mechanism optional. (#32)
* Make code that depends on the legacy "type dispatch" mechanism optional.

* This code is fairly tied to a specific ~1.3 version and uses a legacy dispatch mechanism.
* Moving it and making it optional allows the project to build with PyTorch 1.6 and makes it possible for us to start building out a more modern interface mechanism in parallel.
* Some of the moved code will be brought back into the more modern path, but isolating it now lets this be done incrementally.
* Tests are left failing since the entire frontend is optional and the next step involves reworking the interface mechanism to get them to passing in both regimes.
* Fix a few bogons to get things building
* Add Dockerfile with pytorch

Also, I configure with:
-DCMAKE_PREFIX_PATH="/opt/pytorch/pytorch"

(which is where pytorch is installed in this container)

* Make a dep conditional.

Co-authored-by: stephenneuendorffer <stephen.neuendorffer@xilinx.com>
2020-08-26 12:55:16 -07:00
stephenneuendorffer 31b3041e88
Add pytorch interface to ATen Dialect (#30)
This patch adds a pytorch interface to npcomp.  This interface is modeled
after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar
to a gpu device or the xla backend).  Usage is intended to be something like:

  dev = torch_mlir.mlir_device()
  t0 = torch.randn((4,4), device=dev)
  t1 = torch.randn((4,4), device=dev)
  t2 = t0 + t1
  t2_mlir = torch_mlir.get_mlir( t2 )
  t2_cpu = t2.to('cpu')

In this case t2_cpu would contain the result of the computation, and t2_mlir
contains the mlir description of the computation.  Note that this also
properly returns backward paths synthesized by pytorch.  There are several
parts of this:

1) A tensor type (implemented by tensor.* and tensor_impl.*)
2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*)
3) a temporary IR (implemented by ir.cpp)

There is also a reference lowering directly from the ATen dialect to C
function calls consisting of two parts:

1) The driver that uses the IR to generate MLIR, run Passes and compile the
result using mlir::ExecutionEngine (implemented by jit.cpp and
mlir_gen.cpp)
2) A runtime library implemented by lib/aten_ops.cpp.  Most of the operations
are implemented by callbacks into the torch C++ libraries.

Some aspects of this are known to be less than optimal, in particular:
1) There's some function definitions that don't live in the file corresponding
to their declaration.
2) More aspects of this (e.g. the IR) seem like they should be automatically
generated.
3) It's unclear to me how much of the 'IR' is actually necessary, or whether
MLIR could be created on the fly.

Note that this code is licensed in a way similar to pytorch, with the
intention that eventually (when npcomp reaches some maturity) it should be
pushed there.  (see frontends/pytorch/LICENSE)  The code is also structured
much closer to the pytorch coding style than the LLVM coding style.
2020-08-21 11:22:47 -07:00
Stella Laurenzo 69cda404ef NFC: Fix extra namespace declaration.
* Was causing build break on GCC9.
2020-08-20 16:22:41 -07:00
Stella Laurenzo 77b235f621
Create frontends/pytorch directory. (#31)
* Adds/updates readmes with some notes about code organization and direction.
* Meant to prepare a space for upcoming integration of #30.
2020-08-18 09:43:20 -07:00
Stella Laurenzo a2a36aa8f3
Add mlir-hlo as a submodule and add a script to find versions. (#20)
* I expect that mlir-hlo will be a non-optional dependency of the project, so adding as a sub-module.
* IREE is an optional dependency and I'm keeping this as an out-of-tree checkout for the moment.
* The script will compute the join across both iree and mlir-hlo to find a common LLVM version.
* The script needs some more work (like a flag that says to update the version, etc). Likely needs more testing through an integrate or two.
2020-08-13 16:42:05 -07:00
stephenneuendorffer bb668e6e26
Add ATen Dialect (#16)
This patch adds a dialect intended to be used as a frontend dialect
to facilitate lowering from "A Tensor Library" in torch/pytorch.

This patch includes several passes that are useful in conjuction with the
dialect:

--aten-layer-name: Generates layer names for each operation, which are not
  present in the original pytorch.
--aten-to-std: Lower the ATen dialect into standard dialect function calls.
--return-elimination-pass: convert functions (primarily the toplevel function)
  to pass return values by reference.  This simplifies pytorch integration.
--aten-op-report: generate a textual report about the model
--liveness-report

Future patches will implement actual integration with the pytorch jit to
intercept and generates MLIR in this dialect, then lower the resulting MLIR
into function calls through aten-layer-name -> aten-to-std ->
return-elimination -> std-to-llvm. The result would then jitted using the LLVM
jit, linked against a runtime library which makes calls back into pytorch to
implement all the layers.

Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>

Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>
2020-08-12 19:28:04 -07:00
stephenneuendorffer 14f614396d
Move precommit to 20.04 (#15) 2020-08-07 10:32:02 -07:00
stephenneuendorffer 5beaf4cc01
Fix build again (#14)
The RuntimeShlib.so now lives in /lib.
2020-08-07 08:36:03 -07:00
stephenneuendorffer a5f3b16f92
Fix precommit workflow (#13) 2020-08-06 23:51:05 -07:00
stephenneuendorffer 111ba12e7f
Fix build error (#12)
This debug rule only works with add_mlir_library.
2020-08-05 16:55:42 -07:00
stephenneuendorffer 146ea0a781
Update LLVM to c89e46e76... (#10)
Requires a fixup because BroadcastOp now has a configurable return type.
2020-08-05 14:51:02 -07:00
stephenneuendorffer 44af7a6d30
[cmake] Updates for basic shared library support (#7)
Mostly this is CMake cleanup.  Several library dependencies are missing, which
is often revealed with shared library builds.  Also, it's generally bad to
link directly against LLVM libraries because it fails when using
LLVM_LINK_LLVM_DYLIB.  MLIR will pull in libLLVM.so, and there will be
duplicate linkage with the the explicit libraries.  There may need to be more
refactoring here.
2020-08-05 14:49:18 -07:00
stephenneuendorffer b6313d9c64
Update buildAndTest.yml
Fix path to LLVM/MLIR
2020-08-04 22:12:54 -07:00
stephenneuendorffer 539697c1c6
Update buildAndTest.yml
Fix relative path to llvm/mlir
2020-08-04 21:59:12 -07:00
stephenneuendorffer e1a077aa9f
Update buildAndTest.yml 2020-08-04 19:34:42 -07:00
stephenneuendorffer ca440ec514
update precommit for correct LLVM path (#9) 2020-08-04 19:19:26 -07:00
stephenneuendorffer 0269e991d8
Add github precommit tests with cached LLVM (#8) 2020-08-04 18:57:59 -07:00
Phoenix Meadowlark ac3d402cd6 Update broken links 2020-08-04 18:55:46 -07:00
Stella Laurenzo 186dfd39ea Remove use of namedtupled defaults kwarg.
* It is incompatible with python < 3.7.

Fixes #6
2020-08-04 18:41:22 -07:00
Stella Laurenzo 3efbbe8735 Misc fixes to enable building/testing on manylinux2014 images.
* Since the manylinux images do not hard-link against python libs (resolving them at runtime), the module must be built without resolving undefined references.
* For some reason, builds on this platform are stricter, exposing dependency ordering issues.
* The CMake bits to build the extension are still somewhat of a mess. I have better versions both upstream and in IREE and will be reconciling. For now, don't look too closely.
2020-08-04 17:26:15 -07:00
Stella Laurenzo 38abe99805 Collapse python_native/ into python/.
* These were separated originally for layering reasons that no longer apply.
* Most of the python extension code is under lib/ with just the module setup in python/.
2020-08-03 17:46:34 -07:00
Stella Laurenzo 571c8b448a Collapse different top level test directories into test/.
* Uses local configs and unsupported annotation to disable optional tests.
* This separation was just an artifact of having initial trouble getting lit setup.
2020-08-03 17:41:16 -07:00
Stella Laurenzo fc484d1bd8 Rework reference shape lowering based on upstream shape dialect changes.
* Primarily, the upstream shape dialect now uses tensor<?xindex> for non-erroring, immediate shape calculations (and will return this for shape_of of a tensor or memref).
* In addition, upstream passes do not yet exist for fully lowering to standard ops, so the passes here need to be extended to handle this new convention.
* This should be seen as an intermediate state, necessary to integrate a new LLVM version and needs more work and cleanup for generality.
* There is a good deal of awkwardness in these conversions. The hope is that additional upstream work will yield better defined conversion paths once out of this intermediate state.
2020-08-03 13:43:49 -07:00
Stella Laurenzo 624d4c6c50 Add MLIRContext CL options to npcomp-opt. 2020-08-01 16:06:58 -07:00
Stella Laurenzo 9d5d802cc8 Fix compilation issues due to llvm-project version bump.
* Redundant infer type implementations removed.
* Update to the linalg GenericOp build calls.
2020-08-01 15:23:57 -07:00