This was unfortunately being initialized in a directory below its first use. This was causing the first configure to mis-detect the ABI flags, which was causing type conversion failures at runtime.
Fixes#2298 and hardens some additional messages and checks to better make it clear when something goes awry.
The aten.reshape ops in the decomposition are replaced with prims.collapse
and prims.split_dim ops, which means that the cases where the lowering of
reshape from torch to linalg which are not supported, are avoided.
Essentially, by using the collapse and split_dim ops instead of the
reshape ops, we are not "losing" the information that the reshapes do not
arbitrarily mix dimensions. Which makes lowering easy.
3 additional tests added:
- fully dynamic,
- dynamic only the spatial dimensions,
- dynamic only in the non-spatial dimensions.
Adds a pipeline to convert custom ops and metadata represented as
`torch.operator` custom ops to corresponding `torch` ops where possible.
This is part of a multi-part approach for building ONNX import in as a
regular feature of torch-mlir. It is focused on the conversions vs the
infra. We will end up maintaining a [pure-python
importer](https://github.com/nod-ai/SHARK-Turbine/blob/main/python/shark_turbine/importers/onnx_importer.py)
to go with this in torch-mlir, and we will also maintain test case
generation utilities derived from it.
I have left substantial documentation in the README of the conversion
directory, including the recommended approach that we will take to keep
building this out.
(note that this organizes the code to coincide with the refactoring in
#2442 versus the current flat arrangement)
Adds support for lowering to prims split_op.
Similar design to collapse op lowering in
https://github.com/llvm/torch-mlir/pull/2572, with some
small differences, because the split_dim op (in pytorch) is
view-changing whereas the collapse is not. The difference
means that
1) it must be registered in the function Torch::isViewLikeOp
2) it must be be added to the "expected fail" set for the torch dynamo backend.
The logic for lowering the aten view op to linalg is fairly complex.
In this PR I have tried to follow all non-failing paths through the
lowering and add unit tests where they're missing.
There is 1 logical change to the lowering: redundant tensor.cast ops
(same source and destination type) are folded.
This lifts the core of the jit_ir_importer and ltc out of the pt1
project, making them peers to it. As a side-effect of this layering, now
the "MLIR bits" (dialects, etc) are not commingled with the various
parts of the pt1 project, allowing pt1 and ltc to overlay cleanly onto a
more fundamental "just MLIR" Python core. Prior to this, the Python
namespace was polluted to the point that this could not happen.
That "just MLIR" Python core will be introduced in a followup, which
will create the space to upstream the FX and ONNX pure Python importers.
This primary non-NFC change to the API is:
* `torch_mlir.dialects.torch.importer.jit_ir` ->
`torch_mlir.jit_ir_importer`.
The rest is source code layering so that we can make the pt1 project
optional without losing the other features.
Progress on #2546.
… AtenBernoulli_FloatOp
It fixing case like: `%2110 = torch.aten.arange.start_out %int1,
%int1517, %int1, %2109 : !torch.int, !torch.int, !torch.int,
!torch.tensor -> !torch.tensor`.
`aten.arange.start_out` doesn't have value semantics also, means`%2110`
is an alias for %2109.
So I decompose it to `aten.arange.start` + `torch.contents.overwrite`.
The complex decomposition logic is target to handle cases like view and
dtype cast which I add in e2e tests.
- adds support for an optional verifier to the generated torch op
tablegen (GeneratedTorchOps.td)
- uses the above to add a verifier for the torch permute op.
Motivation: I hit an unclear error from linalg while developing a
decomposition pass for pixel_shuffle. The error would have been clearer
if the problem had been detected earlier in the invalid aten.permute op.
Testing: new tests added. To run added tests, from the base directory
run
```
./build/bin/llvm-lit test/Dialect/Torch/invalid.mlir
```
Steps taken:
1) add generator code to torch_ods_gen.py, run update_torch_ods.sh
2) add (custom) shape and type inference generator code to
abstract_interp_lib_gen.py, run update_abstract_interp_lib.sh
3) Implement lowering to tensor.collapse_dims. Requires the `start` and
`end` values to be constant, else lowering fails
4) Update xfail_sets.py (append to LTC_XFAIL_SET) after running
/tools/e2e_test.sh --filter Collapse --verbose -c XX for all support
backends (XX).
Motivation:
- Supporting the collapse operation will be useful for lowering of
pixel_shuffle (see Issue #2559)
Currently the docs are split into two places, the `docs/` directory
and the Github Wiki of Torch-MLIR. This commit moves the wiki docs to
`docs/` to consolidate everything into one place. This has the added
benefit that users will get all the documentation when they clone the
repository.
Note: there are 4 files in the wiki, but only one is truly needed
- Torch-ops-E2E-implementation.md: only file needed
- Coding-Style.md: the contents of this file are already in
Torch-ops-E2E-implementation.md
- Weekly-LLVM-Update.md: this is outdated. We no longer have a weekly
schedule for llvm updates
- Home.md: Contains links to talks and resources that are already
present in the documentation in `docs/` or in
Torch-ops-E2E-implementation.md
Co-authored-by: Yi Zhang <cathyzhyi@google.com>
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Co-authored-by: Sean Silva <silvasean@google.com>
Co-authored-by: Daniel Ellis <1346302+dellis23@users.noreply.github.com>
Co-authored-by: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
For static tests (that is when the shape is know) for example:
```
@annotate_args([None, ([3, 18, 2, 2], torch.float32, True)])
```
The e2e passes. But only if the replacement op's return type is set as
undefined (optional shape and type must be explicitly made unset),
otherwise there's a error about the function return type.
For dynamic cases, for example if the above is replaced with
```
@annotate_args([None, ([-1, -1, -1, -1], torch.float32, True)])
```
There is a failure to lower to linalg from torch ("view op explicitly
labelled as illegal"). This seems to be because the support for lowering
from torch to linalg with dynamic shapes is limited.
This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20
There are two primary goals:
1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.
Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.
This also takes steps toward a couple of other layering enhancements:
* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.
It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.
Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.
NonValueSemantic Ops like Add_, div_, etc. expect result DType to be the
same as the first input. However, current implementation would result in
wrong result type for case like:
```python
a = torch.randn(3, 3).half() # float16
b = torch.randn(3, 3) # float32
a += b # i.e. torch.ops.aten.add_(a, b)
```
torch expects `a` to be float16, but dtype refinement would infer
float32 type, since it's replaced by `aten.add`.