This commit adds the torch-onnx-to-torch-backend pipeline which
converts the Torch Onnx IR to Torch Backend IR.
This commit also moves the `ScalarizeShapes` pass from the
`torch-backend-to-linalg-on-tensors-backend-pipeline` to the
`torch-onnx-to-torch-backend` pipeline since the primary goal of
this pass is to scalarize the shapes in the IR coming from the
Onnx models.
Set PyTorch and TorchVision version to nightly release 2024-10-15.
Tracker issue for the failing tests added to xfail_set in this PR.
Issue: https://github.com/llvm/torch-mlir/issues/3796
This commit disables the failing sparse tensor tests since they are not
maintained on day-to-day basis and blocks the roll PyTorch update for now.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
- Add Torch to TOSA legalization for the following ops:
+ aten.empty.memory_format
+ aten.scatter.src
+ aten.slice_scatter
+ aten.diag_embed
- Update xfail_sets.py with new e2e results
- Update basic.mlir with new LIT tests
Change-Id: I817ecf207bcfcf97ca54f30c10c76c4f0f4145ae
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
This was preventing dynamic dims in an ONNX model from being reified (causing the generation of `tensor.cast`s and preventing fusion in iree):
```mlir
%2 = torch.vtensor.literal(dense<[4, 256]> : tensor<2xsi64>) : !torch.vtensor<[2],si64>]
%7 = torch.prim.ListConstruct %int2 : (!torch.int) -> !torch.list<int>
%8 = torch.aten.reshape %2, %7 : !torch.vtensor<[2],si64>, !torch.list<int> -> !torch.vtensor<[2],si64>
//... chain of foldable ops linking %2 to the `shape` operand of a `torch.aten.broadcast_to ... -> !torch.vtensor<[?,?],si64>`
```
# Description
Implementation of the op for `torch.aten.unfold`: [TorchToLinalg Op
Support #347](https://github.com/nod-ai/SHARK-ModelDev/issues/849)
Documentation of op can be found here: [PyTorch
Docs](https://pytorch.org/docs/stable/generated/torch.Tensor.unfold.html)
For this op, we apply a sliding window of some `size` along a single
`dimension`, with `step` in between iterations.
`Declaration: aten::unfold(Tensor(a) self, int dimension, int size, int
step) -> Tensor(a)`
The resulting `unfolded` tensor modifies the shape of `dimension` to be
equal to the number of blocks that the sliding windows extracts/inserts,
with an additional dimension of `size` appended (the number of cols of
the output tensor directly translates from the size of the sliding
window).
So if we had a tensor of rank 3 (A x B x C), with dimension = 1, size =
2 and step = 2:
(A x B x C) |=> (A x (B - size) // step + 1 x C x size)
After extracting the window from the input tensor, we insert the (1 x
size) slice into the output tensor. We can make this simpler by mapping
the output indices from the input indices, like they do in the official
implementation:
[PyTorch
Code](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/lowering.py#L1694)
This commit adds the support for the 1-d depthwise convolution as a
special case of 1-d group convolution.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
- Add Torch to TOSA lowering for aten.fill.Scalar/Tensor, aten.flip, and
aten.round
- Fix torchScalarToTosaTensor function to correctly convert Torch scalar
input to TOSA tensor
- Update xfail_sets.py with new e2e results
- Update basic.mlir with LIT tests for new ops
Change-Id: If1e42c2e582710dd8ad0465eed29806fbcdbde41
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
- Add Torch to TOSA legalization for aten.index_select
- Fix createOneDimTfIndices function in TosaLegalizeCommon.cpp to
correctly convert Torch indices to TF-style indices, which is used in
convertGatherNdOp
- Update e2e tests in xfail_sets.py
- Update basic.mlir with new LIT test for aten.index_select
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Change-Id: I52519246183949353a3cf22f0a685fe3df8ec8ff
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Addresses ~200 onnx model compile failures in
<https://github.com/nod-ai/SHARK-TestSuite> related to
<https://github.com/iree-org/iree/issues/18631>.
This change simplifies the result of the generated broadcast op
substantially, but reduces the case coverage slightly.
The case which will become unsupported:
- trying to actually broadcast a dynamic dim that is secretly 1.
When does this case appear in practical scenarios?
- for a model where onnx shape inference cannot figure out that a dim
should be 1.
Why do I think we should not support this case for now?
1. For all models with dynamic dim expand ops, the previous path
uniformly generates uglier linalg IR (making it harder for IREE to fuse
properly with other ops).
2. For models failing shape inference castastrophically enough to fail
to see a dim is statically 1, we can try to apply constant folding in
the onnx model before importing.
Leaving this as a draft PR, since it may be more appropriate to fix the
compilation failure in IREE rather than torch-mlir.
### Example of broadcast required in previous path:
```mlir
%300 = linalg.generic {indexing_maps = [#map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} outs(%299 : tensor<?x12x?x?xi1>) {
^bb0(%out: i1):
%306 = linalg.index 0 : index
%307 = linalg.index 3 : index
%308 = arith.index_cast %285 : i64 to index
%309 = arith.cmpi eq, %308, %c1 : index
%310 = arith.select %309, %c0, %306 : index
%311 = arith.index_cast %286 : i64 to index
%312 = arith.cmpi eq, %311, %c1 : index
%313 = arith.select %312, %c0, %307 : index
%extracted_79 = tensor.extract %reshape_78[%310, %c0, %c0, %313] : tensor<?x1x1x?xi1>
linalg.yield %extracted_79 : i1
} -> tensor<?x12x?x?xi1>
```
### Example of broadcast with simplified shape list:
```mlir
%409 = linalg.generic {indexing_maps = [#map15, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%reshape_135 : tensor<?x1x1x?xi1>) outs(%408 : tensor<?x12x?x?xi1>) {
^bb0(%in: i1, %out: i1):
linalg.yield %in : i1
} -> tensor<?x12x?x?xi1>
```
- Add lowering from Torch to TOSA for aten.diagonal
- Clean up some code
- Update xfail_sets.py with the new e2e results
- Update basic_mlir with the new op mlir test
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Change-Id: I99bed685455752d09ed96edd837c4dfbee152701
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Current version does not work for a mixture of dynamic and static shaped
batch dimensions. Rework to grab the correct dynamic shapes.
---------
Co-authored-by: dan <danimal197@gmail.com>
- Add Torch to TOSA legalization for the following reduction ops:
+ aten.min.dim
+ aten.min
+ aten.max
+ aten.prod
+ aten.prod.dim_int
+ aten.all.dim
- Add dtype casting support for reduce sum and prod ops
- Extend aten.max.dim legalization to a template to support aten.min.dim
legalization
- Update end-to-end tests sets in xfail_sets.py
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Change-Id: I854dd6c0c55e570c1fb7242f20c85cf64d6e7fe0
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Enabled mask and is_causal parameters for torch.aten.scaled_dot_product
attention + relevant comments + tests.
The tests added highlight the new capabilities introduced in this PR,
including:
Attention with F16 mask
Attention with Boolean mask
Causal attention with same Q K V shapes
Causal attention without Q K V shapes
Made sure that one cannot input both mask and is_causal.
As titled, create a new decomposition for `aten.fmod.Tensor` to
`aten.div`, `aten.trunc`, `aten.mul` and `aten.sub`. Note that we only
use `aten.trunc` for floating point operations. This further gets
decomposed to `aten.where` etc. by other existing decompositions.
This decomposition now makes TOSA pass for a simple model with
`aten.fmod` while it makes `stablehlo` fail. For now, we disallow this
decomposition for `stablehlo`
---------
Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
Addresses an issue in <https://github.com/llvm/torch-mlir/issues/3651>
where some unflatten ops generated from onnx models weren't propagating
static shape information. It may be necessary to add further
optimizations for the more general case when some static information is
present in the unflatten (or possibly reshape/view) op's `sizes` list,
but not reflected in the output shape. These ops will only successfully
infer shapes if the `sizes` list is gotten from a list of constant ints
(with possibly one -1). A common example where this fails is when some
of the `sizes` are determined from `aten.size.int` ops on dynamic
tensors, and other `sizes` are known statically.
This PR includes:
- a canonicalizer for `aten.unflatten.int` which converts to
`aten.unsqueeze` when it is expanding one dim to two, and one of the new
dims is statically 1.
- an improvement to the folder for `aten.__or__.bool` which does not
rely on *both* operands being static.
This PR add `floordiv` to the `PY_BUILTIN_TO_TORCH_OP`. For
`aten.mul.int` and `aten.floordiv.int` ops, we add new Canonicalization
Patterns as follow:
```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.mul.int %1, %const-6
```
Will be replaced by
`torch.aten.mul.int %input, %const-30`
And
```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.floordiv.int %1, %const-5
```
Will directly return `%input`
This PR also relaxes the `float` type constraint in TorchToTosa for the
`AtenRsubScalarOp` conversion.
To test:
`cmake --build build --target check-torch-mlir-all`
Previously we only had full suite timeouts, making it impossible to
identify
which specific tests were hanging. This patch adds:
1. Per-test timeout support in the test framework
2. A default 600s timeout for all tests
3. A deliberately slow test to verify the timeout mechanism works
The timeout is implemented using Python's signal module. Tests that
exceed
their timeout are marked as failures with an appropriate error message.
This should help catch and isolate problematic tests that enter infinite
loops, without needing to re-run the entire suite multiple times.
Set PyTorch and TorchVision version to nightly release 2024-08-18.
This commit also updates the `scaled_dot_product_attention` op.
A new attribute `enable_gqa` has been added. As of now, only the
default value for the same is supported.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>