- Add lowering from Torch to TOSA for aten.diagonal
- Clean up some code
- Update xfail_sets.py with the new e2e results
- Update basic_mlir with the new op mlir test
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Change-Id: I99bed685455752d09ed96edd837c4dfbee152701
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Current version does not work for a mixture of dynamic and static shaped
batch dimensions. Rework to grab the correct dynamic shapes.
---------
Co-authored-by: dan <danimal197@gmail.com>
- Add Torch to TOSA legalization for the following reduction ops:
+ aten.min.dim
+ aten.min
+ aten.max
+ aten.prod
+ aten.prod.dim_int
+ aten.all.dim
- Add dtype casting support for reduce sum and prod ops
- Extend aten.max.dim legalization to a template to support aten.min.dim
legalization
- Update end-to-end tests sets in xfail_sets.py
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Change-Id: I854dd6c0c55e570c1fb7242f20c85cf64d6e7fe0
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Enabled mask and is_causal parameters for torch.aten.scaled_dot_product
attention + relevant comments + tests.
The tests added highlight the new capabilities introduced in this PR,
including:
Attention with F16 mask
Attention with Boolean mask
Causal attention with same Q K V shapes
Causal attention without Q K V shapes
Made sure that one cannot input both mask and is_causal.
As titled, create a new decomposition for `aten.fmod.Tensor` to
`aten.div`, `aten.trunc`, `aten.mul` and `aten.sub`. Note that we only
use `aten.trunc` for floating point operations. This further gets
decomposed to `aten.where` etc. by other existing decompositions.
This decomposition now makes TOSA pass for a simple model with
`aten.fmod` while it makes `stablehlo` fail. For now, we disallow this
decomposition for `stablehlo`
---------
Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
Addresses an issue in <https://github.com/llvm/torch-mlir/issues/3651>
where some unflatten ops generated from onnx models weren't propagating
static shape information. It may be necessary to add further
optimizations for the more general case when some static information is
present in the unflatten (or possibly reshape/view) op's `sizes` list,
but not reflected in the output shape. These ops will only successfully
infer shapes if the `sizes` list is gotten from a list of constant ints
(with possibly one -1). A common example where this fails is when some
of the `sizes` are determined from `aten.size.int` ops on dynamic
tensors, and other `sizes` are known statically.
This PR includes:
- a canonicalizer for `aten.unflatten.int` which converts to
`aten.unsqueeze` when it is expanding one dim to two, and one of the new
dims is statically 1.
- an improvement to the folder for `aten.__or__.bool` which does not
rely on *both* operands being static.
This PR add `floordiv` to the `PY_BUILTIN_TO_TORCH_OP`. For
`aten.mul.int` and `aten.floordiv.int` ops, we add new Canonicalization
Patterns as follow:
```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.mul.int %1, %const-6
```
Will be replaced by
`torch.aten.mul.int %input, %const-30`
And
```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.floordiv.int %1, %const-5
```
Will directly return `%input`
This PR also relaxes the `float` type constraint in TorchToTosa for the
`AtenRsubScalarOp` conversion.
To test:
`cmake --build build --target check-torch-mlir-all`
Previously we only had full suite timeouts, making it impossible to
identify
which specific tests were hanging. This patch adds:
1. Per-test timeout support in the test framework
2. A default 600s timeout for all tests
3. A deliberately slow test to verify the timeout mechanism works
The timeout is implemented using Python's signal module. Tests that
exceed
their timeout are marked as failures with an appropriate error message.
This should help catch and isolate problematic tests that enter infinite
loops, without needing to re-run the entire suite multiple times.
Set PyTorch and TorchVision version to nightly release 2024-08-18.
This commit also updates the `scaled_dot_product_attention` op.
A new attribute `enable_gqa` has been added. As of now, only the
default value for the same is supported.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
The einsum lowering was missing the behavior for duplicate indices in
the equation. This amounts to a diagonalization along duplicate pairs of
indices in the equation.
Closes#3575
The PyTorch remainder operator is meant to compute the Python modulus
operator entrywise:
https://pytorch.org/docs/stable/generated/torch.remainder.html#torch.remainder
In python the modulus operator is meant to always return a result with
the same sign as the divisor:
https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations
In other words, torch.aten.remainder should return a Python-style
modulus instead of a C-style modulus. However the remainder operator was
simply translated into arith.ModSI or arith.ModF, which both effectively
compute the C-style modulus. Now the lowering has been modified so that
the modulus operator works properly with negative numbers, both in the
dividend, and the divisor.
This adds the `generate-runtime-verification` pass into the linalg
refbackend, and moves all tests that now abort at runtime into the crash
set, sorted by their respective errors.
I have fixed on set of errors found that way, which are mismatches
between the static dimensions we cast to and the actual dynamic
dimensions. This was caused by wrong annotations on the test cases, like
in
https://github.com/llvm/torch-mlir/pull/3615/files#diff-48bfbf41fcad5fa01b49197d251114f84a2b8de4f1d87ab938a061aedd1419b1R1931
This patch adds basic support for lowering graphs with per-channel
quantization. Per-channel quantized ops have to be excluded from
`FuseQuantizedOps` for now but can be used in QDQ quantized form.
Using this patch, we're able to import and execute (on the linalg
backend) graphs with per-channel quantization applied using the "new"
PyTorch 2.0 Export Quantization.
The static uneven divisible AdaptiveAvgPool2d means that although the
input size is not an integer multiple of ouput size, but the kernel and
stride size can also be fixed (not dynamic). The derivation logic of
kernel and stride size is consistent with
torch/_decomp/decomposations.py:adaptive_avg_pool2d as described in the
following:
1. Stride Size
Firstly , derive the start index in each reduce operation according to
the output size (`n`), `start_index = ([0, 1, ..., n - 1] * input_size)
// output_size`. For each index `k`, if `k * (input_size % output_size)
< output_size`, then the current and previous stride keeps the same as
`input_size // output_size`. So suppose `(n-1) * (input_size %
output_size) < output_size`, the stride in the whole AdaptiveAvgPool2d
process keeps static, as `input_size // output_size`.
2. Kernel Size
torch/_decomp/decomposations.py:adaptive_avg_pool2d calculates a static
kernel size when the input/output sizes satisfy either of the two
conditions, `input_size % output_size == 0` or `output_size %
(input_size % output_size) == 0`. Here if `input_size % output_size ==
0`, then the kernel size equals `input_size // output_size`, otherwise
`input_size // output_size + 1.`
- Adds support for lowering depthwise + quantized convolution ops to
linalg::DepthwiseConv2DNhwcHwcQOp
- Changed the variable name for groupSize (which is really C/G) to the
more appropriate numGroups (G).
- Discovered in e2e testing that linalg does not accept (Cin = groups &&
Cout = K*groups for K>1) as a "depthwise" conv, so this also updates the
case-checking to reflect this issue.