This folds small version of the tensor-scalar comparison operators as
they are commonly used for shape computations. This includes le, lt, ge,
gt, eq, and ne.
This mostly copy-pastes the reduce minimum implementation to reduce max
to improve test coverage. We also improve the aten lowering for min/max
dim for unsigned types.
Current implementation depends on using `aten.view` which has issues
inferring tensor collapse/expand operations during the lowering to
`linalg`. Using flatten and unsqueeze better infers what the later
reshape behavior.
Add e2d support for `aten.linalg_norm` by decompose it to
`aten.linalg_vector_norm`.
Lowering to `aten.linalg_matrix_norm` is still unsupported.
To Test:
`python -m e2e_testing.main -v`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
A handful of operations are commonly used in shape calculations (slice,
concat, broadcast). Added these additional folders to better propagate
simple shape computations.
Existing lowering via aten.view does not work as well for dynamic shapes
as the lowering to tensor.expand must re-infer dynamic shape matching.
Better to directly lower.
Finish supporting importing the vast majority of `onnx` operations. This
includes:
- region support
- region value inherentance
- `torch.string` support
- `torch.list` support
- `torch.optional` support
A bunch of small fixes are interlinked and trigger crashes if not
addressed as a group. This includes:
- aten view when expand from a rank-0 tensor
- slice folder with negative indices
- `aten._shape_as_tensor` folder on a rank-0 tensor
- `aten.cat` of a tensor with a length-0 tensor
The decomposition only suports a NCHW lowering however the operation can
support arbitrary spatial dimensions. Updated the lowering to better
support spatial dimensions.
Torch lowering only supported the most recent version. Refactored the
lowering so more easily handle default values and optional operands /
attributes.
We collapsed and broadcasted scatter indices to a single element
version. We should instead upport `tm_tensor.scatter`s support for
multiple indices and the implicitly broadcasted behavior. This avoids
the serialization and materializing a needlessly large indices tensor.
Strided slicing can occur with a negative stride. In these cases we need
to bound end differently. This included removing a function that was
generating bad limits.
This enables better re-use in downstreams which use different func
implementations and should have no impact on those that don't except in
opt pipelines if using the old form. With interfaces, explicit pipelines
via `--pass-pipeline=` must be used.
Simple folder for limited size aten tensor operations. This is primarily
useful for shape computation folding as they unfortunately can use
`aten` operators. Add, sub, mul are common examples of these folders.
This commit adds the OnnxToTorch lowering for cosh, acosh, asin, asinh,
and atanh op.
This commit also adds the TorchToLinalg lowering for acosh, asin, asinh,
and atanh op.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Some operations include a backend matcher for specialized operations. We
map these back to generics so they appropriately match to the high
performance versions. This is done for the attention operation.
Fixes https://github.com/llvm/torch-mlir/issues/2866
Some backends / downstream projects expect that a "fully converted"
program has no remaining ops or attributes from the original dialect(s).
The lowering decomposes AtenTraceOp into an AtenDiagonalOp followed by
AtenSumOp.
The progress is tracked in
https://github.com/nod-ai/SHARK-Turbine/issues/333.
---------
Co-authored-by: Franz Haniel <franz.haniel@amd.com>
Folds aten::index_select ops under the following conditions:
1. If the input and output are the same shape, the indexing operation is
a NOP, so just return the input.
2. If the input has shape <1x1x...xNx...x1> (all 1's except for one
dim), and the output shape is <1x1x...x1> (all 1's), then there is a
single index, so extract the single element value and return a tensor
with that value.
---------
Co-authored-by: Dave Liddell <dliddell@xilinx.com>
Lowering of torch.aten.all.dim to linalg.
Per PyTorch documentation:
> This function matches the behaviour of NumPy in returning output of
dtype bool for all supported dtypes except uint8. For uint8 the dtype of
output is uint8 itself.
Since there is no support for ui8 in torch-mlir currently
(https://github.com/llvm/torch-mlir/pull/1384#issuecomment-1260011334)
implementation returns failure for that case.
If a tensor is initialized by a list with a single constant integer,
this folder turns it into a torch.vtensor.literal
---------
Co-authored-by: Dave Liddell <dliddell@xilinx.com>
Leaning on the QDQ functionality in torch we can support the QLinearConv
operation by piggybacking through `torch.Convolution`. This includes
some changes such as allowing the `onnx` rewriter to run recursively.
Doing so allows `QLinearConv` to decopmose to `onnx.Convolution` which
is then lowered to `torch`.
So that the CumSum Op in OPT can get the constant that it requires to be lowered to TMTensor
---------
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
Linalg has quantized specific operations. We can lower to these
operations when there is a known zeropoint and scale operations. This
allows the `convolution` to occur with lower bitwidth's, improving the
overall performance.
We were seeing some assertion failures after some checks around folders
were tightened up in LLVM:
https://github.com/llvm/llvm-project/pull/75887 . This PR essentially
moves the logic that used to be applied at the LLVM level into the
folder, which seems to be the suggested fix.
I'm not sure if the IR that caused issues for us _should_ be valid?
```
%1 = torch.aten.detach %arg0 : !torch.tensor<[1],f32> -> !torch.tensor
```
A better fix might be to create a verifier ensuring the result of
`aten.detach` has the same type as its operand.
---------
Co-authored-by: aaron-stgeorge <aaron.stgeorge@getcruise.com>
After noticing a number of commits with unrelated formatting changes,
I think something was changed with clang-format at one point and we're
seeing a number of unrelated changes. Doing a refresh can help avoid
this.
The changes made here came from
```
find lib -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
find include -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
find projects -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
```
This preserves sparsity at the most obvious places of lowering TORCH
tensors to MLIR RankedTensorType tensors. Other places are marked for
audit. With some initial lowering tests.
This adds an encoding field to the torch type, using the interfaces for
printing, parsing, and verification. Note that although this change
prepares adding sparsity to the torch type (as illustrated by the round
trip and invalid tests), nothing in this change depends on the actual
contents of the encoding field!
This includes custom op matching for decomposed operations and fusing
dequantization into dense operations. As a validation we compare
to the dequant+mm torch implementation.
The logic here is very similar to the conversion for AdaptiveAvgPool1d
#2661 with a few modifications:
1. buffVal = -inf instead of 0
2. the main linalg generic op accumulates a max, instead of a sum, to
the first output tensor
3. avg pooling requires dividing the sum pool by the kernel width, which
we stored as an auxilliary tensor (kSizeTensor). Here, the auxiliary
tensor will be recording the indices. Strangely enough, the only
signature available for this function is to return indices, and it
appears that they must be computed whether the user desires them or not.
See
[pytorch/torch/nn/functional.py](https://github.com/pytorch/pytorch/blob/main/torch/nn/functional.py#L1174).
Before writing other adaptive pooling conversions, the logic of this
decomposition should be rolled into a helper function that will work for
both max and avg pooling ops. Even the auxiliary tensor should likely be
automated. This code was written in a slightly more tedious way than
strictly necessary (often using loops to fill SmallVectors up to rank-2,
which is only two in this case), in order to more easily facilitate the
transition to a helper function.
convolution with [time,batch,channel] ordering, as opposed to the
default [batch, channel, time]. Currently implementing by transposing
the input and output, but may need to get its own implementation in the
future because this is supposed to be an op that gives a speedup. This
is used by fairseq
(https://github.com/facebookresearch/fairseq/issues/172).
(in case you were wondering like me, this is different from transposed
convolution. Transposed convolution has fractional strides).
---------
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
Co-authored-by: Frederik Harwath <frederik.harwath@amd.com>
Handle both `torch.dequantize` and `torch.quantize_per_tensor` including
the op based quantization parameter tracking. This includes adding
`qint32` to torch types as it was missing during the initial type
inclusion.
For testing we only have `torch.int8` and `torch.float` types on
function boundaries as the `qint8` types require passing the scale
and zero point quantization information which is not supported yet.
Adds a lowering to Linalg for reflection_pad1d. Based on ideas/code from draft PR
https://github.com/llvm/torch-mlir/pull/2693.
---------
Co-authored-by: Kumar Deepak <kumar@xilinx.com>
The expression for HardSigmoid in Onnx
(https://onnx.ai/onnx/operators/onnx__HardSigmoid.html): max(0, min(1,
alpha * x + beta))
is inherently different from HardSigmoid in Torch
(https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html)
which is: if x < -3 -> 0
elif x > 3 -> 1
else x/6 + 1/2
That being said, it was just better to compute out the entire expression
when translating the Onnx expression to Torch mlir, which is done in
this PR. Some of the logic is shared from the files in
`DecomposeComplexOps`. Therefore, refactored some shared logic between
`DecomposeComplexOps` and `DefaultDomainGToP` and put it in a `Utils`
file.
`AtenStackOp` defines this folder for list operand containing single
element:
```
OpFoldResult AtenStackOp::fold(FoldAdaptor adaptor) {
auto list = getOperand(0).getDefiningOp<PrimListConstructOp>();
if (!list || !list->hasOneUse() || list.getElements().size() != 1)
return nullptr;
return list.getElements()[0];
}
```
However, unlike `AtenCatOp`, `AtenStackOp` cannot be folded away for
single element list operand because the result from a stack operation
contains an additional dimension (of size 1, like expand_shape).
This PR removes the `AtenStackOp::fold` method, and adds an e2e test for
single element list input case, which fails on current `main` as
follows:
```
Unexpected outcome summary: (linalg)
****** Failed tests - 1 tests
FAIL - "TensorsStackSingleElementListModule_basic"
@ trace item #0 - call to "forward"
@ output of call to "forward"
ERROR: shape (torch.Size([10, 32])) is not equal to golden shape (torch.Size([10, 1, 32]))
```
Thanks Chris Lalau Keraly for the bug report.
This commit adds the OnnxToTorch support for BitwiseXor, BitwiseOr, Div, Equal, Cast,
Ceil, Floor, Cos, and Clip op.
This commit also adds the TorchToLinalg support for aten.clamp.Tensor and aten.clamp_min.Tensor op.
Signed-Off By: vivekkhandelwal1424@gmail.com
Adds a lowering for the torch.aten.argmin operator to linalg via decomposition into torch.aten.min.dim.
---------
Co-authored-by: Franz Haniel <franz.haniel@amd.com>
The function `getTypeForScalarType` currently takes an argument to
specify the signedness of integer types. This is leakage of backend
specific requirements into the torch dialect world. Because
`getTypeForScalarType` is a utility function for the torch dialect, it
should only produce types that match the sign conventions used by
PyTorch (regular integers are signed and unsigned integers are
unsigned).
This commit removes the signedness argument from
`getTypeForScalarType`, and moves the backend specific handling of
integer types to the backend code.
This commit adds the OnnxToTorch support for Atan, Bitshift, BitwiseAnd,
and BitwiseNot op.
This commit also adds the TorchToLinalg support for AtenBitwiseLeftShiftTensorOp.
Signed-Off By: vivekkhandelwal@nod-labs.com
The aten.reshape ops in the decomposition are replaced with prims.collapse
and prims.split_dim ops, which means that the cases where the lowering of
reshape from torch to linalg which are not supported, are avoided.
Essentially, by using the collapse and split_dim ops instead of the
reshape ops, we are not "losing" the information that the reshapes do not
arbitrarily mix dimensions. Which makes lowering easy.
3 additional tests added:
- fully dynamic,
- dynamic only the spatial dimensions,
- dynamic only in the non-spatial dimensions.
Adds support for lowering to prims split_op.
Similar design to collapse op lowering in
https://github.com/llvm/torch-mlir/pull/2572, with some
small differences, because the split_dim op (in pytorch) is
view-changing whereas the collapse is not. The difference
means that
1) it must be registered in the function Torch::isViewLikeOp
2) it must be be added to the "expected fail" set for the torch dynamo backend.
This lifts the core of the jit_ir_importer and ltc out of the pt1
project, making them peers to it. As a side-effect of this layering, now
the "MLIR bits" (dialects, etc) are not commingled with the various
parts of the pt1 project, allowing pt1 and ltc to overlay cleanly onto a
more fundamental "just MLIR" Python core. Prior to this, the Python
namespace was polluted to the point that this could not happen.
That "just MLIR" Python core will be introduced in a followup, which
will create the space to upstream the FX and ONNX pure Python importers.
This primary non-NFC change to the API is:
* `torch_mlir.dialects.torch.importer.jit_ir` ->
`torch_mlir.jit_ir_importer`.
The rest is source code layering so that we can make the pt1 project
optional without losing the other features.
Progress on #2546.
… AtenBernoulli_FloatOp
It fixing case like: `%2110 = torch.aten.arange.start_out %int1,
%int1517, %int1, %2109 : !torch.int, !torch.int, !torch.int,
!torch.tensor -> !torch.tensor`.
`aten.arange.start_out` doesn't have value semantics also, means`%2110`
is an alias for %2109.
So I decompose it to `aten.arange.start` + `torch.contents.overwrite`.
The complex decomposition logic is target to handle cases like view and
dtype cast which I add in e2e tests.
- adds support for an optional verifier to the generated torch op
tablegen (GeneratedTorchOps.td)
- uses the above to add a verifier for the torch permute op.
Motivation: I hit an unclear error from linalg while developing a
decomposition pass for pixel_shuffle. The error would have been clearer
if the problem had been detected earlier in the invalid aten.permute op.
Testing: new tests added. To run added tests, from the base directory
run
```
./build/bin/llvm-lit test/Dialect/Torch/invalid.mlir
```
Steps taken:
1) add generator code to torch_ods_gen.py, run update_torch_ods.sh
2) add (custom) shape and type inference generator code to
abstract_interp_lib_gen.py, run update_abstract_interp_lib.sh
3) Implement lowering to tensor.collapse_dims. Requires the `start` and
`end` values to be constant, else lowering fails
4) Update xfail_sets.py (append to LTC_XFAIL_SET) after running
/tools/e2e_test.sh --filter Collapse --verbose -c XX for all support
backends (XX).
Motivation:
- Supporting the collapse operation will be useful for lowering of
pixel_shuffle (see Issue #2559)