This preserves sparsity at the most obvious places of lowering TORCH
tensors to MLIR RankedTensorType tensors. Other places are marked for
audit. With some initial lowering tests.
We can plumb the linear matmul into pytorch using its quantized types
with side channel information. To handle the final int8 operation we
dequantize and requantize.
This commit adds mapping from `onnx.pad` op to `torch.pad` op. Currently
it does not support `axes` parameter of `onnx.pad` op.
Signed-off-by: Gaurav Shukla <gaurav.shukla@amd.com>
Currently transposed convolution is not handled correctly by
`TorchToTosa`. This PR allows transposed convolutions to pass through
the conversion so that they can be handled by other conversion passes
later in a pipeline.
An example input which produces a compilation error is:
```
func.func @forward(%input: !torch.vtensor<[1,64,1,100],f32>) -> !torch.vtensor<[1,64,2,200],f32> {
%true = torch.constant.bool true
%int1 = torch.constant.int 1
%int2 = torch.constant.int 2
%weight = torch.vtensor.literal(dense<0.0> : tensor<64x64x3x3xf32>) : !torch.vtensor<[64,64,3,3],f32>
%bias = torch.vtensor.literal(dense<0.0> : tensor<64xf32>) : !torch.vtensor<[64],f32>
%stride = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
%int1x1 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%output = torch.aten.convolution %input, %weight, %bias, %stride, %int1x1, %int1x1, %true, %int1x1, %int1 : !torch.vtensor<[1,64,1,100],f32>, !torch.vtensor<[64,64,3,3],f32>, !torch.vtensor<[64],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[1,64,2,200],f32>
return %output : !torch.vtensor<[1,64,2,200],f32>
}
```
This MLIR produces an error about a cast operation with a size mismatch
when passed through `torch-to-tosa`:
```
error: 'tensor.cast' op operand type 'tensor<1x64x1x50xf32>' and result type 'tensor<1x64x2x200xf32>' are cast incompatible
```
---------
Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
We can make the per-tensor version of the operation to the dequantize
operation via marking with the make quantized tensor component. This
introductions the `qint*` and `quint*` tensor type that can be lowered
to teh appropriate dequantization behavior during the torch-to-linalg
conversion.
We can map the per_tensor case to the `torch.aten.quantize_per_linear`
operation. In this case we extract the `scale` and `zeropoint` values
and directly invoke the quantization, then return the integer
representation value.
Implemented ONNX.Range. The spec says the data type for start, limit,
delta are 0-D can be double, float, int16, int32, int64, All int types
mapped to !torch.int and all float types mapped to !torch.float
---------
Co-authored-by: Kumar Deepak <kumar@xilinx.com>
Handles the multiple cases of `onnx` constant values and converts them
to `torch` literal tensors. This can include splats with a single
integer or floating point value, a set of explicit integer values, or
an elements array attr of values.
This PR updates the torch-to-tosa conversion with following changes:
- Support torch.none as min/max input argument for tosa.clamp op
- Support negative value as start index for tosa.slice op
- Add tosa.logical_or lowering support
e2e test:
python -m e2e_testing.main --config=tosa
LIT tests:
cmake --build build --target tools/torch-mlir/all
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
The expression for HardSigmoid in Onnx
(https://onnx.ai/onnx/operators/onnx__HardSigmoid.html): max(0, min(1,
alpha * x + beta))
is inherently different from HardSigmoid in Torch
(https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html)
which is: if x < -3 -> 0
elif x > 3 -> 1
else x/6 + 1/2
That being said, it was just better to compute out the entire expression
when translating the Onnx expression to Torch mlir, which is done in
this PR. Some of the logic is shared from the files in
`DecomposeComplexOps`. Therefore, refactored some shared logic between
`DecomposeComplexOps` and `DefaultDomainGToP` and put it in a `Utils`
file.
The three remaining compare operations
onnx.Greater
onnx.Less
onnx.GreaterOrEqual
Are also added with this push request.
This concludes a set of basic tensor compare functions.
Lowerings for `transpose` from ONNX to `aten`. Implementation depends on
making multiple `aten.transpose` operations swapping pairs of dimensions.
As `onnx.transpose` can swap around any dimensions it may require
constructing multiple `aten.transpose`.
This replaces the lowering of aten.cat with tensor.concat, allowing more
efficient handling of concatenations in downstream flows. The refbackend
populates concat decomposition patterns that can be used to recover the
previous lowering.
This commit adds the OnnxToTorch support for Reciprocal, Round,
ScatterElements, Sigmoid, Sin, Tanh, Sqrt, Sub, Sum, Where, Xor,
Squeeze, Unsqueeze ops.
For reviewers, the ops that weren't trivial and probably require extra
review are Sum, Squeeze, and Unsqueeze.
Lowerings for `selu` lowerings for ONNX to the corresponding torch
implementations. Torch's `selu` implementation has fewer features so
we use the a generalized `elu` with the input scale set to `1.0`.
This commit adds the OnnxToTorch support for BitwiseXor, BitwiseOr, Div, Equal, Cast,
Ceil, Floor, Cos, and Clip op.
This commit also adds the TorchToLinalg support for aten.clamp.Tensor and aten.clamp_min.Tensor op.
Signed-Off By: vivekkhandelwal1424@gmail.com
Despite aten.mm requiring the input and output types match, we still opt
to maintain signedness semantics in case later passes try to do any sort
of integer type narrowing.
This commit adds the OnnxToTorch support for Atan, Bitshift, BitwiseAnd,
and BitwiseNot op.
This commit also adds the TorchToLinalg support for AtenBitwiseLeftShiftTensorOp.
Signed-Off By: vivekkhandelwal@nod-labs.com
Adds a pipeline to convert custom ops and metadata represented as
`torch.operator` custom ops to corresponding `torch` ops where possible.
This is part of a multi-part approach for building ONNX import in as a
regular feature of torch-mlir. It is focused on the conversions vs the
infra. We will end up maintaining a [pure-python
importer](https://github.com/nod-ai/SHARK-Turbine/blob/main/python/shark_turbine/importers/onnx_importer.py)
to go with this in torch-mlir, and we will also maintain test case
generation utilities derived from it.
I have left substantial documentation in the README of the conversion
directory, including the recommended approach that we will take to keep
building this out.
(note that this organizes the code to coincide with the refactoring in
#2442 versus the current flat arrangement)
The logic for lowering the aten view op to linalg is fairly complex.
In this PR I have tried to follow all non-failing paths through the
lowering and add unit tests where they're missing.
There is 1 logical change to the lowering: redundant tensor.cast ops
(same source and destination type) are folded.
Add aten.isclose op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests
To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Add aten.unflatten.int op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests
To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.
Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.
In the linalg pipeline, many runtime checks are elided when this returns
true.
Corresponding commits:
* mlir-hlo: 16886a108eff5197f816ca0f1950cc5ff1b078d9
* stablehlo: 77a59815a82b34f7b08ed2d42a711d9920682d0e
* llvm-project: 4acc3ffbb0af5631bc7916aeff3570f448899647
* Adapt to ByteCodeOpInterface changes.
* Adapt to RegionBranchPoint changes: https://reviews.llvm.org/D159116
* Adapt inferReturnTypes to get the value from properties.
* Adapt invalid.mlir to properties syntax
* [TOSA] Align with custom assembly format change.
* [TOSA] handle change of axis to int32 type
* [TOSA] Restore improper convert to i32
Landing with Windows broken (it cannot be fixed because of the way the mlir-hlo dep is inserted). Will followup with an untangling.
---------
Co-authored-by: TatWai Chong <tatwai.chong@arm.com>
Co-authored-by: Eric Kunze <eric.kunze@arm.com>
* RecomposeComplexOps: Remove dead slice op
* lib/Dialect/Torch/IR/TorchOps.cpp: Fold slice ops even when they are on non-value tensors
* lib/Conversion/TorchToTosa/TorchToTosa.cpp: Fix slice start/end out of range/none
* lib/Dialect/Torch/IR/TorchOps.cpp: AtenSliceTensorOp::fold: Fold slices that go from 0:int_max
* More tests for aten.split.Tensor
This commit adds the support for index.Tensor op when the index values
are negative. This commit wraps around the index values by checking
their values at run time.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
check the return type of the division to figure out whether to use
the floating point implementation of a division or to use the integer.
the issue rose from the fact that the inputs are all integer but the
result was casted to floating point. The conversion then chose to
use the integer implementation of division which is not legal in tosa
when all the inputs get casted to floating point.
fix(TorchToLinalg): AtenDivScalarOp
upcast self operand as well if applicable, the self operand must also
be casted to float as it can be an integer.
Lowering torch operations that allow different compatible data types
in its operands to tosa end up generating invalid tosa IR with mixed
data types. In tosa spec, certain operations (generally element-wise
operations) require all operands to have the same data type.
Add wrapper functions for those element-wise tosa ops to perform op
creation with type conversion if necessary.
This commits adds the support for cases for index_put_op:
1.) where index is a 2-d tensor.
2.) where indices is a list of tensors and none, with exactly
2 non none tensors along the consecutive dimensions.
This commit also adds a utility to compute the broadcast shape
given the two input tensors.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.
This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
Credit to @vivekkhandelwal1 for finding the necessary changes.
Summary of changes:
- Switch Tosa_IntArrayAttr[N], Tosa_IntArrayAttrUpto[N] to DenseI64ArrayAttr.
- Replace kNoIterationLimit with kNoLimit. (https://reviews.llvm.org/D140525)
- Add dependency on MhloPasses when MHLO is enabled
- Specify result type when using mhlo::DotOp
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked. Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result. This patch reverts the
commit to make the post-merge builds green again.
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Replace call to `MemoryEffectOpInterface::hasNoEffect`
with `isMemoryEffectFree`.
- Make fix for the dynamic dims, since
`kDynamicSize` value changed to
`std::numeric_limits<int64_t>::min()` from `-1` in llvm
- `makeShapeLLVMCompatible` and `makeShapeTorchCompatible`
utilities convert shapes in order to remain consistent
with the Torch and MLIR semantics.
- Update tags
llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
* build: update llvm tag to 74fb770d
This commit makes the following changes needed to update bump LLVM:
+ replace usages of `tensor::createPadScalarOp`, see https://reviews.llvm.org/D136493
+ Update file checks
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
This commit makes the following changes needed to update bump LLVM:
- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
- Update MHLO commit to build with LLVM commit hash 00d648bd
- Update TorchToMhlo code to work with Stablehlo
- Re-enabled two failing TOSA tests, thus resolving Github Issue #1231
Summary of changes:
- Switch to C++17 (similar to https://reviews.llvm.org/D131348)
- Update MHLO to build with LLVM commit hash 061e0189
- Replace deprecated `hasValue()` and `getValue()` with `has_value()`
and `value()` respectively (https://reviews.llvm.org/D131349)
- Use `TypedAttr` (https://reviews.llvm.org/D130092)
- Use updated assembly format of `mhlo.compare` op (commit
d03ef01e70fbf9afd0fa1976fbb7ed31838929b3 in MHLO repo)
follow up #761:
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is Float16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
* [MHLO] Support for dynamic shape in basic op conversion by introducing CHLO dialect
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
* [MHLO] Support I32 as shape tensor dtype
* [NFC] Add a 'TODO' annotation
Prior to this patch, the torch dialect included `AtenTriuOp` for
computing the upper triangular part of the input matrix, but there was
no code for lowering the op to the linalg dialect.
This patch adds code to generate a `linalg.generic` operation that
compares indices (computed using `linalg.index`) to choose between zero
or the original value (using `arith.select`). The lowering fails if the
number of dimensions are less than two. This patch also adds a few
end-to-end tests.
This commit adds the decomposition of `aten.adaptive_avg_pool2d` op into
`aten.avg_pool2d` op. The current decomposition only supports cases where
input size is equal to the output size.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
In addition to updating the llvm-project submodule, this patch also:
1. updates shape functions and tests so that `func` and `call`
operations refer to the `func` dialect
2. avoid duplicate registration of dialects
This commit adds lowering of `aten.ge.float`, `aten.ge.float_int`,
`aten.ne.float_int`, `aten.gt.float_int` and `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py and scalar_comparison.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is BFloat16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
1. This commit adds lowering of "while-like" prim loop to scf.while
operation.
2. Adds lowering of "for-like" prim loops to scf.for operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
This commit adds lowering of `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
* shape: add shape transfer function for aten.neg
Prior to this patch, the list of shape transfer functions did not
include `aten.neg`, which resulted in errors like below.
```
error: unsupported by backend lowering: tensor with unknown rank or dtype
note: see current operation: %0 = "torch.aten.neg"(%arg0) :
(!torch.vtensor<[256,256],f32>) -> !torch.vtensor<*,f32>
note: this is likely due to a missing shape transfer function in shape_lib_gen.py
```
This patch fixes the problem by adding a shape transfer function to
reflect the point-wise nature of this operation.
* linalg: add translation of aten.neg operation
This patch adds a translation rule to lower `aten.neg` operations on
tensors to an `arith.negf` operation wrapped inside a `linalg.generic`
operation. This patch also adds a rudimentary test.
- This commit adds decomposition of `aten.dropout` op. It also covers the
training mode of the same op.
- It also adds lowering of `aten.sub.float` op.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This leads to much more succinct types in many cases:
```
!torch.list<!torch.int>
!torch.list<int>
!torch.tuple<!torch.list<!torch.int>, !torch.list<!torch.int>>
!torch.tuple<list<int>, list<int>>
!torch.optional<!torch.list<!torch.int>>
!torch.optional<list<int>>
!torch.list<list<list<tensor>>>
!torch.list<!torch.list<!torch.list<!torch.tensor>>>
```
I would like to take this further and allow omitting the `!torch.`
prefix in all cases, but that's harder -- for example, we currently use
`FuncOp` for functions, and so I don't think we can customize the
printing there. It seems like it will be a longer road to getting that
level of customization.
- This commit adds lowering of `aten.eq.int` op as a part of
`convert-torch-to-std` pass.
- It also refactors the code for binary comparison ops lowering.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
- This commit adds lowering of `aten.Bool.Tensor` and
`aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
`aten.Float.Tensor` op, it folds to the scalar number.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
* [tosa] Support for AtenNe[Tensor|Scalar]Op, AtenLog2Op,
AtenBitwiseAndTensorOp, AtenSquareOp and AtenThresholdOp
* Fix for Issue #532 - Mixed input types for few ops and updated few
tests to use i32 instead of i64
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
- This commit adds `aten.assert` op in the Torch dialect.
- The `aten.assert` op is lowered to `mlir::Assert` op.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
* [tosa] Support for AtenCeilOp and AtenReciprocalOp
* [tosa] Support for comparator ops, Aten[Gt|Lt|Eq][Tensor|Scalar]Op with scalar constant
* [tosa] Support for Scalar variants of Aten[Mul|Div|Add|Sub] Ops with scalar constants
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
- Supports variants with multiple dims, one dim, all dime
- Leverages legalize_common and legalize_utils code from
TensorFlow-TOSA work
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
- Remove use of conversion construction macros
- Add mul and div op conversions
- Add corresponding tests
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
The lowering of `aten.Int.Tensor` op has been added.
The changes has been made as a part of `convert-torch-to-linalg` pass.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```
The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.
Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
`abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
A few remain in examples/docs that will be naturally be updated in due
time.
This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
`tools/torchscript_e2e_test.sh` is all green.
This needs a few passes I put into torch-mlir/lib/RefBackend (not to be
confused with `npcomp/lib/RefBackend`, which will soon be deleted).
For the sake of review, since this brings together a lot of things, I
split this into its own commit. I temporarily commented out some "list"
stuff that we are going to remove as part of the torch-mlir refocus.
- builder.getSymbolRefAttr is gone.
- OpAsmOpInterface's getAsmResultNames method needs explicit override
- a bunch of churn for builtin.func needing to be made explicit (and
sometimes implicit?)
- operation printers no longer need to print the operation name
themselves.
- snuck in beneficial trivial addition to TmpDeleteDeadIREEListsPass to
test a particular upstream change e2e with my local patchset.
This converts a basic list op (torch.prim.ListConstruct) to the IREE
dialect.
```
def forward(self, x: float):
return [x, x]
```
turns into:
```
builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> {
%0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float>
return %0 : !torch.list<!torch.float>
}
```
which turns into:
```
builtin.func @forward(%arg0: f64) -> !iree.list<f64> {
%c1 = constant 1 : index
%c0 = constant 0 : index
%c2 = constant 2 : index
%0 = iree.list.create %c2 : !iree.list<f64>
iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64
iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64
return %0 : !iree.list<f64>
}
```
As part of doing this, I realized that it was time to formalize the IR
form that we reach right before running TorchTo{Linalg,Std,...}. We now
call it the "Torch backend contract". We then lower the "Torch backend
contract" to the "npcomp backend contract", which involves the new
TorchConversion (`torch_c`) dialect, which holds ops that need to
operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE
list, etc.) and the `!torch` types.
This made more sense, as I realized that if I didn't factor out
`torch_c` then the Torch dialect would have a dependency on IREE
dialect (we previously didn't notice this was an issue because we only
depended on `builtin` types), which seemed wrong to me.
Recommended review order:
- TorchToIREE.cpp / `TorchToIREE/basic.mlir`
- Look at the new structure of createTorchScriptToNpcompBackendPipeline.
It now lives in TorchConversion/Transforms/Passes.cpp and cleanly
calls into `Torch::createTorchScriptToTorchBackendPipeline` for the
frontend lowering to the Torch backend contract.
- Mechanical change extracting
`torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new
TorchConversion dialect, and a few passes specific to the lowering
from the Torch backend contract to the npcomp backend contract.
- Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that
we convert lists as part of operand materialization, we need to use
the original operands). Also added test for AtenMaxPool2dOp and fixed
m_TorchConstantIntList.
- TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that
are created as part of operand materialization for conv/max pool/avg pool ops
in TorchToLinalg.
- torch.aten.flatten.using_ints to linalg lowering
- torch.aten.max_pool2d to linalg lowering
- Support torch.aten.conv2d for more flexible dilation and strides values
These were legacy concepts that are now superceded by direct Torch to
linalg-on-tensors lowering. These were based on some very early thinking
related to the layering of frontends vs codegen, which is now obsolete
because:
- We expected a lot more centralization at the frontend (TCF) level. It
turns out that frontend needs really vary a lot, and there is no grand
unifying TCF dialect plausible. The additional layer isn't worth it.
- Linalg-on-tensors obsoletes the primary need for TCP. There are still
a few things not representable with linalg-on-tensors, but the support
is growing and the whole "not included in linalg-on-tensors" direction
needs to be rethought. Our TCP dialect didn't cover any of the
actually important things in this space (such as sort, FFT, top-k,
etc.).
See historical [slides](https://drive.google.com/file/d/1iljcpTQ5NPaMfGpoPDFml1XkYxjK_6A4/view) / [recording](https://drive.google.com/file/d/1jSPa8TwPKUt0WuLquGc8OgSUVYJHMvWZ/view)
for more details on the origin story here.
Their presence was confusing users too
[bug](https://github.com/llvm/mlir-npcomp/issues/248).
Also,
- Trim down npcomp-run-mlir testing. It was testing TCF to TCP
lowering for the most part. The essential stuff is retained and
rephrased with linalg-on-tensors. (we should probably rename it
"refback-run" or something, as it is just a way to invoke RefBackend)
- test/Python/Backend/RefJIT/simple_invoke_numpy.py is XFAIL'ed. Our
"anti-framework" direction seems to be the likely future path.
* Added additional *ToLLVM conversion patterns (they were disaggregated from standard).
* Misc renames.
* Spelling change on ConvNCHW op, and it now expects strides and dilations attributes.
- Build adjustments for `.cpp.inc` dialect files.
- Renaming of `memref.dim` to `tensor.dim` for tensor case.
Minor changes:
- Renaming of `mlir::linalg::ReassociationIndices` to
`mlir::ReassociationIndices`.
- Adjust command line option parsing in npcomp-run-mlir.
We plumb through e2e a fair number of interesting cases:
- unary, binary, ternary elementwise ops
- ops like `torch.aten.add.Tensor` that also take a scalar parameter
- static size-1 broadcasting
We allow the static size-1 broadcasting case, but emit a runtime error
in the case of dynamic size-1 broadcasting. This seems like a sweet spot
subset of things that can be lowered directly to linalg, while not being
overly constraining to users. This is consistent with what IREE is doing
for CHLO->Linalg lowering as well
([code](50bf7a87e4/iree/compiler/InputConversion/MHLO/BroadcastingToLinalgPatterns.cpp (L1))).
To test the static size-1 case, we added support for the
`torch.aten.unsqueeze` op and lowering for it through
`linalg.tensor_expand_shape`. This involved a generalization of
`MaximizeValueSemantics` able to handle it (the solution there also
works for `torch.aten.flatten.using_ints` which we need for ResNet
anyway)
Also, a few minor additional changes:
- Add `VerifyInvariantsBeforeBackendLowering` pass, which catches a
large class of errors before we get to backend lowering (now that we
are doing dialect conversion, the errors are way nicer if we just emit
them up front rather than in the guts of a random pattern).
- Minor change to RefBackend to allow `linalg.tensor_expand_shape`.
Recommended review order:
- e2e tests in elementwise.py
- `ConvertElementwiseOp` in TorchToLinalg.cpp + elementwise.mlir test
- `ConvertAtenUnsqueezeOp` in TorchToLinalg.cpp + unsqueeze.mlir test
- RefineTypes.cpp + tests
- MaximizeValueSemantics changes + test
- VerifyInvariantsBeforeBackendLowering pass + test
This op is much better behaved than the `torch.tensor.literal` op
(which is the new name of the `torch.tensor` op). In particular
`torch.tensor.literal`:
- always has a maximally refined type.
- always has value semantics.
- can be constant folded / CSE'd.
ReduceOpVariants is changed to perform the transformation from
`torch.tensor.literal` to `torch.vtensor.literal` (which in general
involves static information casts and copies.
This new op also allowed tightening up `torch.tensor.literal` to only
accept NonValueTensorType (instead of any tensor type).
This new ".literal" name is more descriptive. It was getting too
confusing seeing an op called just `torch.tensor` (we originally called
it that because that's the name of the similar function in the Torch
Python API, but it just doesn't fit here).
This replaces the ad-hoc use of `i64` throughout the Torch layer, and
helps to keep it crystal clear the distinction between `!torch.int`
(which is modeling the Python `int` type) and the various types that
serve as dtypes of tensors, which are a totally different type universe.
Changes:
- `!torch.int` type and C bindings.
- Change `torch.constant.int` parser to not need the `: i64` at the end.
- `m_TorchConstantInt` matcher to aid with matching constants.
- BackendTypeConversion changes for `!torch.int` -> `i64` type
conversion.
- Refactor finalizing patterns in FinalizingBackendTypeConversionPass
(they were getting very repetitive).
- Mechanical rewriting of `!torch.int` to `i64` in all the tests, and
`AnyTorchIntType` to `Torch_IntType` in the `.td` files.
This finishes removing the dependence on the basicpy dialect!
Changes:
- Add `!torch.bool` type and replace use of `!basicpy.BoolType` in
Torch-related code.
- Rename BuiltinTensorize to BackendTypeConversion since now it handles
bool conversions (and, when we add !torch.int and !torch.float, it
will handle those as well), and generalize the related utilities (I
also moved them to Torch/Transforms since they aren't really part of
Torch/IR).
- Add `torch.to_i1` and `torch.from_i1` ops for materializations
- [cleanup] Reorganize `torch.constant.*` ops in TorchOps.td
- Remove dependency of `torch` dialect on `basicpy` dialect and also
`std` dialect. For `std`, we use some call related ops, but the
`torch` dialect itself never produces them (we have passes that do
though).
This is fairly mechanical. Recommended review order:
- New stuff in Torch/IR
- New BuiltinTypeConversion files.
- Mechnical fixups elsewhere.
This removes our reliance on the numpy dialect and avoids our off-label
use of the builtin tnesor type for modeling unknown dtypes. The
`!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor.
The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic
tensor. The new types look as follows syntactically:
```
// Least-static-information, non-value-semantic tensor.
!torch.tensor
// Explicit form of least-static-information variant.
!torch.tensor<*,unk>
// Least-static-information, value-semantic tensor.
!torch.vtensor
// Explicit form of least-static-information variant.
!torch.vtensor<*,unk>
// Fixed-set of allowable element types, with first-class support for
// Torch's frontend signedness semantics.
!torch.tensor<*,si32>
// First-class support for unknown dtypes.
!torch.tensor<[?,?,?],unk>
// Standard MLIR representation of `?` for unknown dimensions.
!torch.tensor<[?,2,?,4],unk>
// Statically shaped / dtyped example.
!torch.vtensor<[1,2,3,4],f32>
```
This required fairly significant changes throughout the compiler, but
overall it is a big cleanup. We now have a much clearer layering of "the
Torch frontend lowering" vs "lowering to std + linalg + etc.".
At the C++ level, there is `ValueTensorType`, `NonValueTensorType`.
We also have a helper `BaseTensorType` (kind of like ShapedType) which
interoperates with those two.
Included changes:
- New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for
creating torch tensor literals in the frontend.
- Consistently use signedness for the types (except i1 which I didn't
touch -- we need to sort out the situation with !basicpy.BoolType
there anyway so will be attending to that soon)
- Frontend can annotate whether an argument to the function has value
semantics. We currently require this, as our backend contract does not
currently allow us to even model the non-value-semantic case. Before,
the value-semantic assumption was randomly injected in the middle of
the pass pipeline.
- Move ArrayToTensor (now called MaximizeValueSemantics) and
RefinePublicReturn passes to torch dialect.
- The TorchToStd and TorchToLinalg passes are now type conversions from
`!torch.vtensor` to `tensor` and use the dialect conversion infra.
The overall conversion pipeline is set up following the best practices
of the "Type Conversions the Not-So-Hard Way" talk. This required
introducing `torch-func-builtin-tensorize` and
`torch-finalizing-builtin-tensorize` passes analogous to the upstream
bufferization passes with the corresponding names (mostly just
copypasta from there).
- Misc Torch-level canonicalizations -- we now cleanly layer the
lowering to std later in the pipeline, so we are gradually lessening
our reliance on random std constant folding before we get to that
point.
Recommended review order:
- New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp
- New ops in TorchOps.td / TorchOps.cpp
- Less important / more mechanical stuff
- Frontend changes.
- Pass changes/additions in `Torch/Transforms` and `Conversion/`
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.
This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).
Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
imported as `torch.somens.someunqualname.someoverloadname` (skip the
last dotted part if the overload name is empty), OR, if we don't have
such an op registered, it is imported as
`torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
- The addition of the "overload name" is a critical element here, as
the `(ns,unqual,overload)` triple is unique, which solves a lot of
problems we were having.
- This involves having separate MLIR ops for the `trailing_` and
`.out` variants and all the different overloads. This seemed
necessary, because the set of overloads is so wild and varied and
unstructured. The previous design was leaning into some underlying
structure that just isn't there -- the default situation is
the "random overload that we want to manage on the MLIR side",
rather than that being an exception. E.g. `aten::ne` (not-equal)
has 21 overloads, only 4 of which are c10 dispatcher ops see
[gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
and the "out" variant is really called `.Tensor_out` instead of
`.out` as it frequently is for other ops.
- Rationale for all being in `torch` namespace: the set of operators
are so varied and unstructured that "dialect per namespace"
doesn't result in anything resembling the typical MLIR dialect
boundary expectations. We could maybe draw the boundary at
dispatcher ops vs non-dispatcher ops, but that doesn't seem to
really result in very much useful structure at this point in time.
- Note: within the torch operator registry, we effectively have a
mini-basicpy subdialect (already type-resolved), which is reasonably
structured.
- The existing Torch op interfaces are also removed -- now that we
track the overload name, we can losslessly find the original
operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
`ReduceOpVariantsPass` that keys off certain traits (and perhaps
eventually interfaces) to reduce variants of ops to a smaller set,
ideally operating on immutable tensors and using surrounding ops to
model the mutability/aliasing aspects.
- Note: `torch.ns.unqual.overload` ops allow both immutable and
mutable tensors (unlike the previous hard distinction in the common
case). This is a premonition for a future change that will introduce a
bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
"ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
It should look somewhat familiar, but the benefit of hindsight has
allowed a lot of simplifications.
The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).
Recommended review order:
- Start at some of the new import IR, e.g. in
`frontends/pytorch/test/node_import/prim.py`,
`frontends/pytorch/test/acap_export/test_export_add3.py`, and other
tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
and associated generated files:
- `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
- `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
`frontends/pytorch/csrc/builder`. Probably most interesting is the new
code in `torch_to_mlir_utils.cpp` that has the logic to create the
`torch.operator` ops or `torch.ns.unqual.overload` ops.
This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
Interestingly, TorchScript has its own op (`torch::jit::Operator`)
registry separate from the dispatcher (it is a superset of the
dispatcher).
This is where the "prim" ops and some "aten" ops (that should probably
be renamed to "prim") live. In particular, `aten::__is__` is in that
latter category of "aten but really prim". This registry is also the
source of truth for what the TorchScript interpreter calls into when it
executes.
The bulk of the "not part of the dispatcher" ops live in
09feb5f579/torch/csrc/jit/runtime/register_prim_ops.cpp (L82)
And the registry itself lives in:
09feb5f579/torch/csrc/jit/runtime/operator.cpp (L196)
This fold further reduces the IR of ResNet by folding away some
more not-taken branches. These not-taken branches in ResNet require
first-class handling of the list type which we don't yet have on any
backend.
This is our first op with error semantics, and stresses the system.
There are a few design notes of special interest:
- RefineTypes.cpp's note about shape inference in the presence of code
that dynamically produces and error, and it is provable statically.
- ATenToLinalg.cpp's notes about future automation of the ATen->linalg
path.
- The notes in Passes.td about using low-tech `std.assert` ops instead
of `shape.assuming`.
Note: Doesn't work on IREE yet due to the `std.assert` op (needs to be
lowered to `vm.fail` on the IREE side).
- renames of OwningRewritePatternList -> RewritePatternSet
- also `insert` to `add`
- RewritePatternSet holds a context now
- memref dialect split from std
* Import ATen conv2d conversion and test
This is a first attempt at expanding ATen-to-TCF conversion for the
conv2d operator. Eventually, this will come in use when lowering a
high-level conv-based model.
- TensorFromElementsOp -> tensor::FromElementsOp
- `cmpi "eq", ...` -> `cmpi eq, ...`. Same for `cmpf`
- syntax change for private func ops
- some changes to the python bindings
Changes:
- linalg init tensor change (outs+init -> just outs)
- IntegerType::get and other builtin types now take the context as the
first arg
- LLVMType::* is gone. Now LLVM Types are just regular Type's.
This involved adding a `tcp.splatted` op to splat a dynamically sized
init tensor. See rationale in TCPOps.td docs.
One interesting observation is that when lowering tcf.matmul to
linalg.matmul, we need to both 1) create the error checks and 2)
calculate a shape transfer function to create the init tensors.
Previously, 2) was deferred to bufferizing tcp.matmul later. I'm not
sure if this is a conflation of concerns or not. For now, it's not a big
burden.
* Conversions are very simple, suporting mul, maximum and add (alpha=1 only).
* Example added with pass pipeline needed to run.
* Much missing off of the golden path but sufficient for such simple cases.
It was previously going through this awkward route that prematurely
created linalg.generic ops, which was an annoying layering problem since
we can't compute a shape transfer function for linalg.generic in the
general case. Now we pass it through the same path as tcp.matmul, with
the shape transfer function being defined for tcp.add.
This also removed the need for TCPToLinalg (now deleted). The equivalent
of that is happening in lower-shaped-results-to-memref. One interesting
outcome of this: we're basically using linalg as a "Buffer TCP". We
might want to look into using named structured ops for more of TCP, but
that would be a big velocity hit since then any change to the ODS /
verification for those ops would be a change to the upstream structured
op ODS generator. After we have more experience defining this manually,
we should re-evaluate rebasing TCP on generated named linalg ops.