Fixes https://github.com/llvm/torch-mlir/issues/2764
In the case of OPT, there are ConstantOfShape ops whose input shape is
not static (that is, an initializer), but rather comes from a Constant
op. The importer can't handle such non-static input shapes.
The fix here is to create initializers for a subset of Constant ops
(ones with "value" attributes), so that their outputs can be used
statically. Additionally, there was no case for creating a splat of
int64, so I added that as well.
---------
Co-authored-by: Dave Liddell <dliddell@xilinx.com>
Changes made during upstreaming:
* Removed comments attributing some copied code back to torch-mlir
(since it is now repatriated).
* Re-organized imports.
* Inlined RefMapping/RefTracker and TypeSubclassMap from an external
utility module.
* Added FxImporter class comments.
* Updated stack trace extraction to be fail safe.
* Added an entry-point for `import_frozen_exported_program` which uses
the shiny new upstream `torch.export.export()` API (versus the
lower-level/older API that Turbine is presently using). This
necessitated a small FX rewrite to line external state management up
with current conventions.
* Adapted one of Turbine's importer tests to go with this initial
submission. Turbine unfortunately has a lot of more-integration-ey
tests, and I would like to extract those as more of unit tests of the
importer features and upstream them that way vs trying to copy directly.
For now, one overall test with the initial submission gets us moving.
I acknowledge that there are some code quality things that could be
improved in this submission: this was authored over the course of many
months (and often via some trial and error). I would like to keep it
relatively converged with the downstream for the next few steps while
getting the test suite upstreamed. And then it will be easier to take a
hygienic pass through the code.
Including co-authors for contributors in the git log of the original
repository.
Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com>
Co-authored-by: Avinash Sharma <aviator1994@gmail.com>
Co-authored-by: Arham Khan <arhammkhan@gmail.com>
Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu>
Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
Simple Python console script to import an ONNX protobuf to the torch
dialect for additional processing.
For installed wheels, this can be used with something like:
```
torch-mlir-import-onnx test/python/onnx_importer/LeakyReLU.onnx
```
Or from a dev setup:
```
python -m torch_mlir.tools.import_onnx ...
```
This is part 1 of 2, which will also include upstreaming the FX
importer. I started with ONNX because it forces some project layout
updates and is more self contained/easier as a first step.
Deviating somewhat from the RFCs on project layout, I made the following
decisions:
* Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks
already has opened up that namespace and it seemed to fit. Better to
have fewer things at that level.
* Setup the build so that the root project only contains MLIR Python and
pure Python deps (like the importers), but this can be augmented with
the `projects/` adding more depending on which features are enabled.
* The default build continues to build everything whereas in
`TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a
`torch-mlir-core` wheel with the pure contents only.
`onnx_importer.py` and `importer_smoke_test.py` are almost verbatim
copies from SHARK-Turbine. I made some minor local alterations to adapt
to paths and generalize the way they interact with the outer project. I
expect I can copy these back to Turbine verbatim from here. I also
updated the license boilerplate (they have the same license but slightly
different project norms for the headers) but retained the correct
copyright.
Other updates:
* Added the ONNX importer unit test (which also can generate test data)
in lit, conditioned on the availability of the Python `onnx` package. In
a followup once I know everything is stable, I'll add another env var
that the CI can set to always enable this so we know conclusively if
tests pass.
* Moved the ONNX conversion readme to `docs/`.
* Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` ->
`TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the
JitIR importer and LTC options `cmake_dependent_options` for robustness.
This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20
There are two primary goals:
1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.
Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.
This also takes steps toward a couple of other layering enhancements:
* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.
It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.
Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.
Attempt to solve https://github.com/llvm/torch-mlir/issues/2490
Changes for Non Value Semantic Ops having the
`IsTrailingUnderscoreInplaceVariant` trait :
- AnyTorchTensorType -> Torch_NonValueTensorType
- AnyTorchOptionalTensorType -> AnyTorchOptionalNonValueTensorType
- AnyTorchListOfOptionalTensorType ->
AnyTorchListOfOptionalNonValueTensorType
- AnyTorchListOfTensorType -> AnyTorchListOfNonValueTensorType
Created three new tensor types for optional and list non value tensors.
Add aten.isclose op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests
To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Add aten.unflatten.int op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests
To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Add linspace/cumprod/roll ops to ODS and add shape inference functions
to make it work with LTC.
Also, add some tensor utils to LTC library for searching for non-detach
copy nodes.
Set PyTorch and TorchVision version to nightly release 2023-09-28.
aten.baddbmm changes done because upstream PyTorch has now added
support for fp16 gemm on CPU.
Refer: 9399e0b1ff
Set PyTorch and TorchVision version to nightly release 2023-09-26.
aten._convolution.deprecated changes done because upstream PyTorch has
now added support for fp16 native convolution on CPU.
Refer: 7c9052165a
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
Making the same PR with #2457, as I accidentally thought the review was already made and merged it (reverted).
Add decompose empty_strided op.
Referring to #1776, this decomposition op only supports default stride values, because accessing the tensor or indexing over that, the indices are determined by the strides.
In MLIR, this is not implicitly supported but assumes that the strides are default while iterating over the tensor.
* view_as_real test case, allow dtype in testutils.randn
* abstract python upstream func implemented
* fixed upstream dtype func, implemented view_as_real backend op
* formatted AtenViewAsRealOp, removed change in e2etest/framework
* removed test suit from reshape_like.py, because it's moved to basic.py
* implemented C-API wrapper for mlirComplexF128 type
* fixed torch.complex dtype width in MLIR and Torch MLIR, deleted float16 dtype dict
* Changed IR input of aten fft_fft unit test
* code refactored
* code refactored and fixed ci test
* refactored: removed white spaces, and rolled back to having both input/output affine expr
* refactored: deleted output affine expr to reduce redundancy
* xfail ltc backend
* removed ComplexImag and ComplexReal from torchdynamo xfail set
* copied and pasted from main branch as there's no change to be made in this file
* refactored abstract_interp_lib_gen.py
* refactored: torchtypes.td, formatted, removed commented out code
* Tensor[]? support operands type support using partial codegen
* aten.index.Tensor support via partial codegen
* Add torch.index_put tracing support
* Added optional tensor list type support for LTC/TorchMLIR lowering
* Added comments
Co-authored-by: Gleb Kazantaev <gleb.kazantaev@cerebras.net>
* LTC/TorchMLIR multi-output operations support
* Update torch-mlir jit lowering to support ops with dynamic number of outputs
* Added support for aten::split_copy, aten::split_with_sizes_copy
* Fix native function for aten::split; cleanup code
* Fix TorchMlirTensorList lowering
* Remove xfails