… AtenBernoulli_FloatOp
It fixing case like: `%2110 = torch.aten.arange.start_out %int1,
%int1517, %int1, %2109 : !torch.int, !torch.int, !torch.int,
!torch.tensor -> !torch.tensor`.
`aten.arange.start_out` doesn't have value semantics also, means`%2110`
is an alias for %2109.
So I decompose it to `aten.arange.start` + `torch.contents.overwrite`.
The complex decomposition logic is target to handle cases like view and
dtype cast which I add in e2e tests.
- adds support for an optional verifier to the generated torch op
tablegen (GeneratedTorchOps.td)
- uses the above to add a verifier for the torch permute op.
Motivation: I hit an unclear error from linalg while developing a
decomposition pass for pixel_shuffle. The error would have been clearer
if the problem had been detected earlier in the invalid aten.permute op.
Testing: new tests added. To run added tests, from the base directory
run
```
./build/bin/llvm-lit test/Dialect/Torch/invalid.mlir
```
Steps taken:
1) add generator code to torch_ods_gen.py, run update_torch_ods.sh
2) add (custom) shape and type inference generator code to
abstract_interp_lib_gen.py, run update_abstract_interp_lib.sh
3) Implement lowering to tensor.collapse_dims. Requires the `start` and
`end` values to be constant, else lowering fails
4) Update xfail_sets.py (append to LTC_XFAIL_SET) after running
/tools/e2e_test.sh --filter Collapse --verbose -c XX for all support
backends (XX).
Motivation:
- Supporting the collapse operation will be useful for lowering of
pixel_shuffle (see Issue #2559)
For static tests (that is when the shape is know) for example:
```
@annotate_args([None, ([3, 18, 2, 2], torch.float32, True)])
```
The e2e passes. But only if the replacement op's return type is set as
undefined (optional shape and type must be explicitly made unset),
otherwise there's a error about the function return type.
For dynamic cases, for example if the above is replaced with
```
@annotate_args([None, ([-1, -1, -1, -1], torch.float32, True)])
```
There is a failure to lower to linalg from torch ("view op explicitly
labelled as illegal"). This seems to be because the support for lowering
from torch to linalg with dynamic shapes is limited.
This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20
There are two primary goals:
1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.
Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.
This also takes steps toward a couple of other layering enhancements:
* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.
It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.
Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.
NonValueSemantic Ops like Add_, div_, etc. expect result DType to be the
same as the first input. However, current implementation would result in
wrong result type for case like:
```python
a = torch.randn(3, 3).half() # float16
b = torch.randn(3, 3) # float32
a += b # i.e. torch.ops.aten.add_(a, b)
```
torch expects `a` to be float16, but dtype refinement would infer
float32 type, since it's replaced by `aten.add`.
Add aten.isclose op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests
To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Add aten.unflatten.int op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests
To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Strict symbolic shapes allow us to assume numpy-style dynamic broadcasts
never occur. This allows us to strengthen the folder for broadcasts to
cases where the rank is the same and all shapes match (including dynamic
sentinel values).
Set PyTorch and TorchVision version to nightly release 2023-09-28.
aten.baddbmm changes done because upstream PyTorch has now added
support for fp16 gemm on CPU.
Refer: 9399e0b1ff
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.
Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.
In the linalg pipeline, many runtime checks are elided when this returns
true.
This commit adds to the lowering of `aten.view` handling for the
following cases:
- `(..., a.size(i))` -> `(..., a.size(i), 1, ..., 1)`
- `(..., a.size(i), 1, ..., 1)` -> `(..., a.size(i))`
Fixes: https://github.com/llvm/torch-mlir/issues/2448
Set PyTorch and TorchVision version to nightly release 2023-09-26.
aten._convolution.deprecated changes done because upstream PyTorch has
now added support for fp16 native convolution on CPU.
Refer: 7c9052165a
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
While trying to fix a bug in the `ConvertAtenViewOp` pattern in the
linalg backend, I realized that the pattern had become quite complex and
had accumulated some dead code, making it hard to reason about.
This commit simplifies the pattern quite a bit. The main changes are:
1. All the static helper functions in the `ConvertAtenViewOp` class have
been simplified, both in their signature and their body. Each one now
performs simple calculations on arrays, and take the least number of
arguments necessary.
2. The body of [the `while`
loop](9fce566b0c/lib/Conversion/TorchToLinalg/DataMovement.cpp (L407))
inside the main pattern has been changed to work on `MutableArrayRef`
slices, to avoid having to keep track of `start` and `end` indices for
the input and output shape arrays.
3. All the heuristics used to determine the mapping between the input
and output dimensions are now in [this relatively short `if-else`
section](9fce566b0c/lib/Conversion/TorchToLinalg/DataMovement.cpp (L428-L460)),
making it easy to see what is going on.
4. Dead code was eliminated + updates to some of the documentation
comments
This commit does not add any new functionality to the
`ConvertAtenViewOp` pattern.
Making the same PR with #2457, as I accidentally thought the review was already made and merged it (reverted).
Add decompose empty_strided op.
Referring to #1776, this decomposition op only supports default stride values, because accessing the tensor or indexing over that, the indices are determined by the strides.
In MLIR, this is not implicitly supported but assumes that the strides are default while iterating over the tensor.
We just have to do this: I ran into an issue today where I needed to make a one line patch to stablehlo to work around a compiler issue, and it is completely unapparent how to do so given that the mlir-hlo repo is a read-only export and is at the tail end of a multi-week integration chain from the open-source stablehlo repo.
We've discussed this often enough and gotten +1 from everyone that they are ok with taking the e2e testing hit if it becomes necessary: It is necessary as the current situation is unmanageable.
Looking at it, I expect it wouldn't actually be very difficult to build a little runner binary out of the stablehlo interpreter and subprocess call that in order to get the testing coverage back. I leave that as an exercise to the users of this part of the stack and recommend following the breadcrumbs from the deleted python/torch_mlir_e2e_test/stablehlo_backends/linalg_on_tensors.py file and the main.py changes.
Note that I am pointing us at a stablehlo fork for the moment until it is apparent that we don't need to carry any local patches to it. We can update this in a few days if everything is clear.
Corresponding commits:
* mlir-hlo: 16886a108eff5197f816ca0f1950cc5ff1b078d9
* stablehlo: 77a59815a82b34f7b08ed2d42a711d9920682d0e
* llvm-project: 4acc3ffbb0af5631bc7916aeff3570f448899647
* Adapt to ByteCodeOpInterface changes.
* Adapt to RegionBranchPoint changes: https://reviews.llvm.org/D159116
* Adapt inferReturnTypes to get the value from properties.
* Adapt invalid.mlir to properties syntax
* [TOSA] Align with custom assembly format change.
* [TOSA] handle change of axis to int32 type
* [TOSA] Restore improper convert to i32
Landing with Windows broken (it cannot be fixed because of the way the mlir-hlo dep is inserted). Will followup with an untangling.
---------
Co-authored-by: TatWai Chong <tatwai.chong@arm.com>
Co-authored-by: Eric Kunze <eric.kunze@arm.com>