Commit Graph

1445 Commits (087fea0608dac3995b74e5c22ae7950287fe7a73)

Author SHA1 Message Date
zjgarvey 7a1ad0d7c0
[TorchToLinalg] Adds Support for Remaining Quantized Matmul Cases (#3167)
The new cases added for quantized matmuls are:

1. vec-vec
2. vec-mat
3. mat-vec

each of which are now lowered to expand(s), quantized_matmul, and
collapse.
2024-04-16 09:28:28 -07:00
Vinayak Dev a0232e9ebd
[MLIR][TORCH] Add OnnxToTorch lowering for ReduceL1 Op (#3146)
Adds OnnxToTorch Lowering for the ReduceL1 op.
2024-04-16 12:24:46 +05:30
Xinyu Yang ae4724763a
[Stablehlo] Enhance broadcast pattern in matmul Ops (#3161)
To pass test "MatmulStaticBroadcast_basic" in stablehlo:
```python
class MatmulStaticBroadcast(torch.nn.Module):
    def __init__(self):
        super().__init__()

    @export
    @annotate_args([
        None,
        ([4, 1, 6, 7], torch.float32, True),
        ([8, 1, 5, 7, 6], torch.float32, True),
    ])
    def forward(self, lhs, rhs):
        return torch.matmul(lhs, rhs)


@register_test_case(module_factory=lambda: MatmulStaticBroadcast())
def MatmulStaticBroadcast_basic(module, tu: TestUtils):
    module.forward(tu.rand(4, 1, 6, 7), tu.rand(8, 1, 5, 7, 6))
```
2024-04-16 10:10:36 +08:00
zjgarvey 5e564b5864
Adds Some Quantization Support for AtenMatmulOp (#3147)
1. onnx.MatMulInteger now converts to aten.matmul instead of aten.mm
2. aten.matmul, for ranks >=2, now allows quantized inputs and will
lower to linalg::quantized_matmul or linalg::quantized_batch_matmul.
3. added AtenMatmulOp to the FuseQuantizeOps rewrite patters
QuantizeOperands, QuantizeTransposedOperands, and QuantizeAccumulator
4. added several tests, including some to test AtenMmOp with varying
quantization signed-ness.
5. a quantized matmul mat-vec test is added to verify the failure to
lower to linalg; cleaned of out-of-date code related to common
torch-mlir lowering xfails.
6. in debugging a real model with quantized matmuls, I found a bug on
the scalarize-shapes pass which resulted from the aten.full op folder
returning an incompatible result type. This is fixed by the small change
here to
[lib/Dialect/Torch/IR/TorchOps.cpp](https://github.com/llvm/torch-mlir/compare/main...zjgarvey:torch-mlir:MatMulIntegerFix?expand=1#diff-dc8ed165c207918e606490eee3984b1ad51d7034e6aac36fc046bf47f6f03f4f).
2024-04-15 16:06:47 -07:00
IanWood1 5708ee7ec9
Added 2 Ops: Floor divide scalar and Floor divide scalar mode (#3156)
- Added linalg lowering for `AtenFloorDivideScalarOp`
  - Needed `AtenDivScalarModeOp` for the decomp.
- Added linalg lowering for `AtenDivScalarModeOp`
- Moved linalg payload logic to `createDivModePayload()` since the logic
was nearly identical for both `AtenDivScalarModeOp` and
`AtenDivTensorModeOp`. Just a template function
 -  Added `AtenDivScalarModeOp` lowering for stablehlo
 

Pytorch's
[`torch.floor_divide()`](https://pytorch.org/docs/stable/generated/torch.floor_divide.html)
in a previous version (for a reason unknown to me) preformed a
truncation instead of "floor". The already implemented op
`AtenFloorDivideTensorOp` was done before this change. However, this
wasn't caught because our testcases only tested positive floor division.
I changed this to floor as well as adding a few test cases.
2024-04-15 13:45:10 -07:00
jinchen 83cba8c696
[onnx] Support for `onnx.EyeLike` via torch lowering (#2994) 2024-04-15 09:23:26 -07:00
jinchen 859f5d280f
Generalize getting index for onnx compress op (#3150) 2024-04-12 15:18:22 -07:00
zjgarvey 197ef4224b
Avoid Type Mismatch in Slice Folder (#3154)
Fixes issue #3153
2024-04-12 11:43:45 -07:00
Xinan Jiang(姜曦楠) 71d90788d3
[MLIR][TORCH] Support parallel dimemsions expand/collapse (#3051)
This PR support `aten.view` with unique unknown dimension both in input
shape and output shape while the pass convert-torch-to-linalg that
lowing `aten.view` to `tensor.collapse_shape` or `tensor.expand_shape`.

Below is an example
```
func.func @test_reshape(%arg0: !torch.vtensor<[1,?,50,16],f32>) -> !torch.vtensor<[1,?,16],f32> attributes {torch.assume_strict_symbolic_shapes, torch.onnx_meta.ir_version = 9 : si64, torch.onnx_meta.opset_version = 19 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
  %int1 = torch.constant.int 1
  %int-1 = torch.constant.int -1
  %int16 = torch.constant.int 16
  %0 = torch.prim.ListConstruct %int1, %int-1, %int16 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
  %1 = torch.aten.view %arg0, %0 : !torch.vtensor<[1,?,50,16],f32>, !torch.list<int> -> !torch.vtensor<[1,?,16],f32>
  return %1 : !torch.vtensor<[1,?,16],f32>
}
```
2024-04-11 10:43:03 -07:00
Rob Suderman a1fe307a76
[torch] Support implicit batch for index_put (#3128)
If there is only a single value scattered there can be an implicit batch
dimension. This includes a check for the implicit batch dimension when
reshaping the update tensor. It includes an e2e test to verify
correctness.
2024-04-11 10:18:03 -07:00
penguin_wwy d4a30b7e67
Fix deprecated uses of cast/dyn_cast/dyn_cast_or_null/isa (#3130)
We should prefer functional style as the method style is deprecated
https://github.com/llvm/mlir-www/blob/main/website/content/deprecation/_index.md#deprecated
(https://mlir.llvm.org/deprecation/)
2024-04-11 06:47:35 -07:00
Xinyu Yang 308c45e61a
[Torch] Fix PrimListUnpackOp::getCanonicalizationPatterns (#3140)
Fix the case PrimListUnpackOp's result num is not equal to PrimList
length.
See the following example:
```python
    def forward(self, x):
        if len(x.shape) == 5:
            b0, t, c0, h0, w0 = x.shape
            b, c, h, w = torch.mul(b0, t), c0, h0, w0
        else:
            b1, c1, h1, w1 = x.shape
            b, c, h, w = b1, c1, h1, w1
        res = torch.reshape(x, [b, c, h, w])
        return res
```
Without this fix, the following error message will occur:
```
/root/torch-mlir/externals/llvm-project/mlir/lib/IR/PatternMatch.cpp:118: virtual void mlir::RewriterBase::replaceOp(mlir::Operation *, mlir::ValueRange): Assertion `op->getNumResults() == newValues.size() && "incorrect # of replacement values"' failed.
```
2024-04-11 19:48:49 +08:00
Xinyu Yang 6524838bcb
[Torch] Add general AdaptiveAvgPool2dOp decompose support (#3111)
Previously, it could only handle the situations where outputsize == (1,
1) or outputsize == (input_H, input_W). Now it supports all situations
where input_H % output_H== 0 && input_W % output_W == 0
2024-04-11 17:02:59 +08:00
Yuanqiang Liu 88533b1968
[Stablehlo] fix aten.arange's lowering to stablehlo (#3138)
* promote to f64 to do division, avoid division on i64 (floor div)
* refactor torch-to-stablehlo-pipeline
2024-04-11 15:55:56 +08:00
zjgarvey aa5e150313
Adds Some uint8 Quantization Fixes (#3122)
1. Changes the linalg lowering for dequantization ops to always sign
cast to float to prevent misrepresenting uint32 overflow on subtraction
with zero point.
2. Adds a basic quantized model test which only quantizes and
dequantizes and now passes with these changes in linalg and onnx
configs.
3. Changes the aten.mm lowering to allow mismatched quantized types. 
4. If a quantized matmul arg is uint8, we shift by 128 to faithfully
represent the quantization as a signed i8 quantization. This worked fine
in the AtenMmOp lowering, but I'd be happy to move it to a rewrite in
FuseQuantizedOps.cpp instead if that seems more appropriate.

With the changes 3 and 4, the QuantizedMLP_basic and
QuantizedSingleLayer_basic e2e tests now passes with the onnx config.
2024-04-10 12:36:58 -07:00
Xinyu Yang 5eb0cf9104
[Torch] Add decompose of AtenToPrimDeviceOp (#3131)
As device information isn't relevant to torch-mlir
2024-04-10 22:26:48 +08:00
Yuanqiang Liu 8d5e2578b0
[Stablehlo] lowering aten.view to shape.num_elements + stablehlo.comp… (#3125)
…ute_reshape_shape

as that `aten.view` support at most one `-1` in dim list. The original
calculation of `numel` is wrong when there is a `-1` in dim list.
2024-04-09 14:54:57 +08:00
Xinyu Yang 42a16fa912
[Torch] Support Aten_CastFloatOp. (#3115)
By canonicalize Aten_CastFloatOp into AtenToDtypeOp
2024-04-09 11:06:53 +08:00
Xida Ren (Cedar) dd967eb199
[ONNX] Support onnx.LSTM (#2969)
This PR only performs a lit test. In lieu of an e2e test, https://github.com/nod-ai/SHARK-TestSuite/pull/142 makede sure that the lowering works & the numbers check out.

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-08 12:23:33 -07:00
Vivek Khandelwal 1d6e4c3d77
[MLIR][TORCH] Add OnnxToTorch lowering for Einsum op (#3117)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-08 22:38:01 +05:30
Xinyu Yang 84c24e5771
[Torch] Support Aten__And__ScalarOp (#3114) 2024-04-08 20:24:17 +08:00
Yuanqiang Liu 2c56ef9252
[Torch Dialect] canonicalize aten.sign to aten.sgn (#3112)
* `aten.sign` is a sub-set of `aten.sgn` (`aten.sgn` support complex
type).
2024-04-08 20:05:42 +08:00
Yuanqiang Liu 43d54efd14
[cmake] link TorchMLIRTorchConversionPasses to TorchMLIRConversionPasses (#3113)
* as that `TorchMLIRTorchConversionPasses` missing dependencies of
`TorchMLIRTorchToStablehlo` and `TorchMLIRTorchToTensor`.
* use `TorchMLIRConversionPasses` instead of scattered targets.
2024-04-08 14:44:34 +08:00
Yuanqiang Liu 498ab997cd
[Stablehlo] lowering aten.log1p to stablehlo.log_plus_one (#3110) 2024-04-07 17:01:58 +08:00
Yuanqiang Liu 0a00f38a7e
[Stablehlo] add stablehlo-aggressive-simplification in e2e test (#3109)
* so that more stablehlo e2e testcases would pass.
2024-04-07 10:48:11 +08:00
Rob Suderman 9d9a05366e
[torch] Fix aten.squeeze lowering to use result shape (#3106)
Squeezes can be ambiguous without the output shape information. For
instance (1, 1, 256) squeezed can be either (1, 256) or (256). We need
to check the resulting shape to know what the shape should look like.
2024-04-04 09:43:12 -07:00
Vivek Khandelwal af54d27820
[MLIR][TORCH] Fix Onnx.TopK lowering (#3103)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 22:12:48 +05:30
Vivek Khandelwal 7e778e2179
build: manually update PyTorch version (#3094)
Set PyTorch and TorchVision version to nightly release 2024-04-01.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 10:48:37 +05:30
Vivek Khandelwal ce7d4f1660
[MLIR][TORCH] Fix Onnx.ReduceSum lowering for failing e2e tests (#3095)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 09:57:19 +05:30
Rob Suderman f97cd4893f
[torch] Improve shape inference for dynamic shapes (#3091)
Shapes can be processed as tensors to represent the set of dimensions.
As reshapes take a list of scalars this can result in a single dynamic
dimension blocking the adjacent static dimensions.

This pass attempts to de-couple tensor computations related to shapes
and propagate values to better support lowering scalar tensor
computations.
2024-04-02 16:19:57 -07:00
zjgarvey 40e762ca42
Adds result types to a prelu decomp (#3098)
This adds explicit result types instead of relying on shape/dtype
computations.

Solves a regression issue with IREE: #3092
2024-04-02 11:41:56 -07:00
Yuanqiang Liu 6cbb2f7ae0
[Stablehlo] add stablehlo-canonicalize-dynamism when lowering (#3097)
so that many stablehlo e2e testcases could pass
2024-04-02 22:47:24 +08:00
Vivek Khandelwal d1f770c620
[MLIR][TORCH] Fix OnnxToLinalg lowering issue for ReduceMean op (#3008)
This commit also cleans up the OnnxToTorch lowering for the ReduceMean
op and adds the support for handling edge cases.

Signed-Off By: Vivek Khandelwal vivekkhandelwal1424@gmail.com
2024-04-02 16:54:04 +05:30
Xinyu Yang ac1cd3d78a
[Torch] Support AtenDivTensorModeOp with static int input for linalg and stablehlo backend (#3088) 2024-04-02 17:28:53 +08:00
Thomas Dietert d2432bbe5a
[MLIR][Torch] Do not convert bias tensor to element type if NoneType (#3072)
The `convertTensorToElementType` function expects it's argument to have
a valid tensor type that is not `Torch::NoneType`. This PR checks that
the bias tensor is not of type `Torch::NoneType` before calling
`convertTensorToElementType` on the bias tensor argument in the
`matchAndRewrite` member function of the `ConvertAtenConvolutionOp`
class.
2024-04-02 14:19:26 +05:30
ptrifunovic98 1c8c47d483
Add complex support for aten.norm and similar operations (#3052)
Add support for complex-type input tensors for norm, vector norm, and
Frobenius norm operations.
2024-04-02 14:03:30 +05:30
zjgarvey 532d297c46
[ONNX] Preliminary Work Towards Supporting QuantizedMLP_basic onnx e2e test (#3089)
See the related issues here:
[SHARK-Turbine#556](https://github.com/nod-ai/SHARK-Turbine/issues/556)

1. Adds uint8 casting to onnx.Cast op
2. Fixes an issue with onnx.DequantizeLinear when the scale comes with
shape [1].
3. Adds support for unsigned types in an AtenItemOp folder
4. Adds a simpler quantized model for easier debugging
5. Adds a fusion pass to convert [quant -> dequant -> transpose -> mm]
patterns to [transpose -> quant -> mm].
6. Moved some xfails that are still not passing, but for different
reasons than onnx.cast failures.
2024-04-01 16:21:05 -07:00
Thomas Dietert 3c33dbd987
[MLIR][Torch] Canonicalize torch.from_i1 and torch.to_i1 (#3067)
When lowering `torch.aten.convolution`, it is expected that the
'transposed' argument is a torch.constant operation. In some cases, the
argument was a `from_i1` operation converting an `arith.constant`
operation into a torch.bool. This is not wrong semantically, but instead
of generalizing the legality of the `torch.aten.convolution` op, we
canonicalize `arith.constant` ops followed by `from_i1` ops to
`torch.bool` ops.

For example:
```
//===-------------------------------------------===//
Legalizing operation : 'torch.aten.convolution'(0x124705b90) {
  %33 = "torch.aten.convolution"(%arg0, %20, %21, %31, %29, %30, %19, %32, %0) : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int) -> !torch.vtensor<[1,10,24,24],f32>

  * Fold {
  } -> FAILURE : unable to fold

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : unimplemented: only constant transposed supported.      <-- Resolved by this PR
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported Scalar to Tensor like op
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported elementwise op
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported reduce op
  } -> FAILURE : pattern failed to match
} -> FAILURE : no matched legalization pattern
//===-------------------------------------------===//
<stdin>:21:11: error: failed to legalize operation 'torch.aten.convolution' that was explicitly marked illegal
    %17 = torch.operator "onnx.Conv"(%arg0, %0, %1) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [5 : si64, 5 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [1 : si64, 1 : si64]} : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>) -> !torch.vtensor<[1,10,24,24],f32> 
          ^
<stdin>:21:11: note: see current operation: %33 = "torch.aten.convolution"(%arg0, %20, %21, %31, %29, %30, %19, %32, %0) : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int) -> !torch.vtensor<[1,10,24,24],f32>
```

Additionally, we require the canonicalization of `to_i1` operating on a
torch.constant bool to an `arith.constant ... : i1` for the e2e tests to
pass successfully.
2024-04-01 14:25:51 -07:00
penguin_wwy b98f7f75dc
[stablehlo] Reduce unnecessary template specialization code (#3047) 2024-04-01 14:18:49 -07:00
Xinan Jiang(姜曦楠) 1cdae6bc68
[MLIR][TORCH]Add support lowing aten.Int.bool to arith (#3083)
Now there no lowing for `aten.Int.bool` in `convert-torch-to-arith`
pass. this PR add this support.

Below is the UT.
```
func.func @torch.aten.Int.bool(%arg0: !torch.bool) -> !torch.int {
  %0 = torch.aten.Int.bool %arg0 : !torch.bool -> !torch.int
  return %0 : !torch.int
}
```
2024-04-01 10:05:08 -07:00
Vivek Khandelwal 6844c84702
[MLIR][Torch] Fix OnnxToLinalg lowering for AvgPool op (#3076)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-01 22:14:14 +05:30
Gaurav Shukla 129a79417a
[MLIR][ONNX] Fix onnx.gather_nd implementation (#3070)
The indices should be expanded before the torch.gather operation.

Signed-off-by: Gaurav Shukla <gaurav@amd.com>
2024-04-01 20:17:09 +05:30
Xinyu Yang da88efad89
[Torch] Fix bug of DecomposeAtenSelectIntOp (#3087)
Fix bug of DecomposeAtenSelectIntOp. Because it may use resultTy when
resultTy has not been inferred.

```
    auto resultTy = op.getType().cast<BaseTensorType>();
    if (sliceTy.getSizes().size() == resultTy.getSizes().size()) {
      rewriter.replaceOp(op, slice);
      return success();
    }

```

So I add restriction.
2024-04-01 21:25:02 +08:00
Jiawei Wu 76080936d4
[stablehlo] add aten.index_put and aten.scatter_add op conversion support (#3086) 2024-04-01 19:39:49 +08:00
Xinyu Yang 40008b025a
[Torch] Support prelu decomposition (#3069) 2024-03-29 08:05:00 +08:00
zjgarvey c19fc9ba47
[ONNX] Fixes Issue with Dynamic Dims in GlobalAveragePool -> Torch Conversion (#3053)
Two e2e tests (AdaptiveAveragePool1/2dUnitOutputSizeDynamic) were
failing due to numerics. This was as a result of passing -1 as the
kernel size in the lowering for the corresponding onnx op
GlobalAveragePool.
2024-03-28 09:43:09 -07:00
Xinyu Yang e6e7689a24
[Torch] support decompose aten.einsum with ellipsis slicing (#3056) 2024-03-27 12:42:10 -07:00
Xida Ren (Cedar) 5f325749f9
add lowerings for AtenLtIntOp and AtenLeIntOp (#3061)
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-03-27 10:06:43 -07:00
Yuanqiang Liu 0a581a97a7
[Torch Dialect] enhance aten.int.tensor's canonicalize (#3058)
support fold with literal vtensor.  
change it to canonicalize because this pattern will create new op.
2024-03-27 09:51:58 +08:00
Rob Suderman 14b548f968
[torch] Improve shape inference for `torch-to-linalg` path for reshapes (#3055)
Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
2024-03-26 12:41:40 -07:00
Vivek Khandelwal 9ae33e482e
[MLIR][TORCH] Add OnnxToTorch lowering for ops (#3049)
This commit adds the OnnxToTorch lowering for the Mish, Softplus,
HardSwish, Trilu, ThresholdedRelu op

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-25 20:29:07 +05:30
schnkmwt 1fcbfa87ec
Implement linalg lowering of diag_embed torch op (#2885)
This PR adds lowering of diag_embed to linalg dilect.
Tracked in https://github.com/nod-ai/SHARK-Turbine/issues/288

---------

Co-authored-by: sachink <sachink@xilinx.com>
2024-03-22 16:32:50 -07:00
zjgarvey 99b3a5f117
Converts all Adaptive Pooling Ops to Linalg (#2808)
The previous conversions for AtenAdaptiveAvgPool1dOp and
AtenAdaptiveMaxPool2dOp are refactored into a general templated
conversion that works for all of the AtenAdaptive...PoolNdOp's.

New support is added for the following ops:

1. AtenAdaptiveMaxPool1d
2. AtenAdaptiveMaxPool3d
3. AtenAdaptiveAvgPool3d

Support is also provided for passing inputs without batch dimensions.
For example, applying adaptive_avg_pool2d to an input tensor of rank 3.

After [pytorch #118162](https://github.com/pytorch/pytorch/pull/118162)
gets down to torch-mlir, I'll add a test for AdaptiveMaxPool1d with
return_indices (which will pass with that upstream fix).

---------

Co-authored-by: James Newling <james.newling@gmail.com>
2024-03-22 11:05:20 -07:00
zjgarvey 6aa481c204
[ONNX] LogSoftmax to Torch (#3024)
This PR adds support for onnx.LogSoftmax both for old versions (<13,
with axis >=0), and new versions (13).
2024-03-22 11:01:39 -07:00
Gaurav Shukla 50635dd509
[ONNX][MLIR] Add support for onnx.gather_nd (#2988)
Signed-off-by: Gaurav Shukla <gaurav@amd.com>
2024-03-22 21:38:39 +05:30
Rob Suderman 3a56714bff
[torch] Fix clamp ranges on quantize_per_tensor on unsigned (#3018)
SExtValue was used for `int` and `uint` clamp values. This caused the
result to always be outputed as `zero`.
2024-03-20 13:37:47 -07:00
Xida Ren (Cedar) cb5cb506df
Fix SCF Forloop fails to convert to linalg when a tensor argument is supplied to the loop block (#3040)
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-03-20 11:04:02 -07:00
zjgarvey 6ff71b40c8
[ONNX] onnx.DynamicQuantizeLinear to Torch (#3009)
This adds support for converting DynamicQuantizeLinear from torch-onnx
to torch.

I could not get an e2e test to pass, since there seems to be some issues
with uint8 casting somewhere lower in the pipeline. For example
compiling with IREE for llvm-cpu, I would get either the correct zero
point (if zp < 128) or the correct zero-point minus 256 (if zp >= 128).
The output tensor seems to always return a tensor of zeros, which also
occurs when running uint8 examples through QuantizeLinear.

Edit: the first problem can be resolved by casting the output back to
uint8 on output, the second problem is resolved with PR #3018
2024-03-20 10:58:25 -07:00
jinchen 9cf6c45a39
Add OnnxToTorch support for Compress op (#3025) 2024-03-20 17:12:08 +00:00
Abhishek-TyRnT df02692726
Dynamic size support for flatten (#3005)
Added support for dynamic shapes in `flattenusingints` op in tosa
dialect. Due to this some Argmax tests pass
This PR fixes this issue https://github.com/llvm/torch-mlir/issues/3004

The following tests pass after this PR
 ```
1. "ArgmaxIntModule_basic"
2. "ArgmaxIntModule_multiple_maxs"
3. "ArgmaxModule_basic"
```
2024-03-19 15:19:29 -07:00
zjgarvey 7a9608bb69
[ONNX] Reduces onnx.Div sinceVersion to 7 (#3041)
The only difference between version 7 and newer versions is support for
different data types. We should allow this pattern to match as early as
7. Earlier versions have a more manual broadcast specification through
attributes, so I did not include those versions.

See: [onnx.Div
docs](https://onnx.ai/onnx/operators/onnx__Div.html#l-onnx-doc-divl)
2024-03-19 13:35:05 -07:00
Yuanqiang Liu 8b96727d0d
[Stablehlo] lowering chlo to stablehlo in torch-to-stablehlo pipeline (#3037)
as that stablehlo is better than chlo as the boundary between frontend
compiler and backend compiler.
2024-03-19 21:18:54 +08:00
Pavani Chowdary c51e2130f2
[onnx] support for lowering mod op from onnx to torch (#2859)
nod-ai/Shark-Turbine#267

---------

Authored-by: boddu.pavani@research.iiit.ac.in
Co-authored-by: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-18 17:54:37 +05:30
Xinan Jiang(姜曦楠) d8a52e82c2
[onnx] Fix onnx.cast cases between int32 and int64 (#2982)
2 modifications:
1. torch.int64 is enum 4 in TORCH_DTYPE_TO_INT
2. add int32 support
2024-03-15 17:14:09 +00:00
Yuanqiang Liu 4282eb9e76
[Torch Dialect] support aten.fake_quantize_per_tensor_affine (#3014) 2024-03-15 08:53:29 +08:00
Nithin Meganathan 798bfd7dff
Adds accumulator types in TorchToLinalg for `AtenMmOp` and `AtenConvolutionOp` (#3027) 2024-03-14 16:40:40 -07:00
Yuanqiang Liu 870e63bc3c
[Torch Dialect] support decomposition of aten.linspace (#3006) 2024-03-14 08:28:33 +08:00
Yuanqiang Liu 43c6996a31
[Torch Dialect] add folder for aten.ceil and unify patterns of ceil, … (#3010)
…floor, round
2024-03-14 07:41:58 +08:00
ptrifunovic98 524ff99216
Implement lowering of torch.aten.linalg_cross (#2986)
Closes
[nod-ai/SHARK-Turbine#497](https://github.com/nod-ai/SHARK-Turbine/issues/497)
2024-03-13 12:17:22 -07:00
aldesilv 6fa21bd8b1
OnnxToTorch lower celu op (#2920) 2024-03-13 20:34:10 +05:30
Nithin Meganathan 5ecc1d5c0d
Align softmax accumulation types with Torch's CUDA implementation (#2996) 2024-03-12 15:07:45 -07:00
Yuanqiang Liu ad6159c7cb
[Stablehlo] lowering aten.round to stablehlo.round_nearest_even (#3011) 2024-03-12 08:58:20 +08:00
Rob Suderman e78c99e74e
[torch] Update folders for splat operators (#3012)
Splat operators required the output is 1-D. This was not a required
restriction and was loosened to 2d.
2024-03-11 16:45:49 -04:00
Rob Suderman 8fb28661f9
[onnx] Fix onnx.ReduceMean lowering (#3002)
Reduce mean lowerings did not succesfully lower to `linalg` via torched.
There were two separate paths that could be consolidated to a single
simpler pass. This resulted in a significant improvement in test
coverage.
2024-03-11 11:32:53 -07:00
Yuanqiang Liu 229ca3a9e1
[Torch Dialect] emit aten::mul and add folder (#3007) 2024-03-11 19:59:34 +08:00
Rob Suderman bd7f1baa42
[onnx] Fix expand operation for dynamic shape max (#3001)
If the broadcast shape is length-1 at a dim while `?` in the input dim
then we need to broadcast to the dynamic dim. This is equivalent to
taking a max of two dimensions.
2024-03-08 16:23:07 -08:00
Rob Suderman 0723584936
[torch] Add folder for torch.aten.*.Scalar comparisons (#3000)
This folds small version of the tensor-scalar comparison operators as
they are commonly used for shape computations. This includes le, lt, ge,
gt, eq, and ne.
2024-03-08 13:44:00 -08:00
Andreas Falkenberg 551a4e45f3
[onnx] Add support for `onnx.Gemm` with no bias (#2993)
Previous gemm version required a bias vector. 
This provides an alternate path to `Torch::AtenMm`
with no bias operation.
2024-03-07 15:58:38 -08:00
Rob Suderman 1964208d19
[onnx] Fix constant pad for dynamic shape (#2989)
The current padding operation was not functional for dynamic shapes.
Updated and enabled tests so that onnx.pad tests pass.

Work TBD for reflection padding.
2024-03-07 13:29:50 -08:00
Scott Todd 7b18646def
[onnx] Handle optional arguments in Clip op pattern. (#2976)
Spec: https://onnx.ai/onnx/operators/onnx__Clip.html
2024-03-07 17:25:14 +00:00
Rob Suderman c15f1a2bd2
[onnx] Adding lowering for `onnx.Size` operation (#2985)
We can support `onnx.Size` by requesing the size of each dimensions and
taking the product of the results, then packing it into a tensor.

---------

Co-authored-by: Scott Todd <scott.todd0@gmail.com>
2024-03-06 17:01:05 -08:00
Rob Suderman a78659742a
[onnx] Migrate `onnx.ReduceMax` to match `onnx.ReduceMin` (#2981)
This mostly copy-pastes the reduce minimum implementation to reduce max
to improve test coverage. We also improve the aten lowering for min/max
dim for unsigned types.
2024-03-06 16:48:21 -08:00
Andreas Falkenberg ea76dd12ba
[onnx][torch] Gridsampler E2E test and corrections of gridsampler (#2987)
The addition of an e2e test is actually provided in the Shark-Testsuite.
This adds 2 test cases for the gridsampler e2e test. 
Also as intended there were some items found which needed correction, so
the Gridsampler op has also a change.
2024-03-06 10:56:58 -08:00
Rob Suderman 06292d9429
[torch] Rework `aten.repeat` to use flatten and unsqueeze (#2984)
Current implementation depends on using `aten.view` which has issues
inferring tensor collapse/expand operations during the lowering to
`linalg`. Using flatten and unsqueeze better infers what the later
reshape behavior.
2024-03-06 10:19:18 -08:00
Ze Zhang aa7c9a9653
e2e support aten.linalg_norm to aten.linalg_vector_norm (#2953)
Add e2d support for `aten.linalg_norm` by decompose it to
`aten.linalg_vector_norm`.

Lowering to `aten.linalg_matrix_norm` is still unsupported.

To Test: 

`python -m e2e_testing.main -v`

---------

Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
2024-03-05 16:31:01 -08:00
Rob Suderman bc0527676b
[torch] Add support for `torch.split_with_sizes` via decompose (#2979)
Convert to individiual slices and tuple together as a list.

---------

Co-authored-by: Scott Todd <scott.todd0@gmail.com>
2024-03-05 15:01:21 -08:00
Rob Suderman 933db87a07
[onnx] Add support for constants of `i1`s (#2978)
`getRawBuffer` expects a densely packed vector of `i1` values however
`onnx` does not densely pack the values. Include code to handle the
packing / unpacking.
2024-03-05 13:55:13 -08:00
Rob Suderman a86e89ecb5
[torch] Additional folders for shape computations (#2972)
A handful of operations are commonly used in shape calculations (slice,
concat, broadcast). Added these additional folders to better propagate
simple shape computations.
2024-03-04 11:46:49 -08:00
Chi_Liu 09875fabd1
[MLIR][ONNX] Add ONNX ReduceProd support (#2943)
Alternatives to https://github.com/llvm/torch-mlir/pull/2908

Fix https://github.com/nod-ai/SHARK-Turbine/issues/353
2024-03-04 11:07:03 -08:00
Rob Suderman 19d4888278
[torch] Make torch.aten.unflatten lower directly to linalg (#2971)
Existing lowering via aten.view does not work as well for dynamic shapes
as the lowering to tensor.expand must re-infer dynamic shape matching.
Better to directly lower.
2024-03-04 10:17:42 -08:00
Rob Suderman d51e80b648
[onnx] Fix onnx.gather lowering for rank-0 indices (#2973)
We assumed rank was atleast 1 however it can be rank-0, generating an
illegal pair of flatten / unflatten operations. Corrected this.
2024-03-04 08:25:19 -08:00
Yuanqiang Liu 916554f270
[Stablehlo] add torch_to_stablehlo::getBackendTypeForScalarType (#2975) 2024-03-04 23:31:54 +08:00
Rob Suderman 61f0a5facf
[torch] Add an `aten.cat` length-0 canonicalization (#2966)
If an input is length-0 along the dimension of canonicalization we can
remove the tensor from the list
2024-03-01 21:41:12 -08:00
Rob Suderman d030bffc62
[torch] Support `aten.view` rank-0 collapse (#2965)
Collapsing to a rank-0 tensor using `aten.view` was currently bailing
out. Added the special case.
2024-03-01 12:31:07 -08:00
Vivek Khandelwal 579ac8b666
[MLIR][TORCH] Fix OnnxToLinalg lowering issue for sub and sum op (#2954)
This commit adds the support for scalar conversion to byte. 
This commit also fixes the OnnxToLinalg lowering issue for Onnx.Sub and
Onnx.Sum op.
Fixes https://github.com/nod-ai/SHARK-Turbine/issues/466 
Fixes https://github.com/nod-ai/SHARK-Turbine/issues/467

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-02-29 21:48:46 +05:30
mmakevic 76b81e0ccd
Implement lowering of torch.aten.fmod.Tensor (#2767)
Closing https://github.com/nod-ai/SHARK-Turbine/issues/351
2024-02-29 11:22:03 +05:30
Andreas Falkenberg 5437f32193
[onnx][torch] Lower `onnx.grid_sampler` to the `torch` equivalents (#2952)
This is the lowering of gridsampler from onnx to torch using our prior
implementation of AtenGridSamplerOp.
Here are several checks for cornercases implemented. We may decide to
have part of these checks in AtenGridSamplerOp instead of the onnx
lowering portion.
2024-02-28 13:52:15 -08:00
Rob Suderman e48fe45886
[onnx] Import `onnx` import to pass remaining tests (#2951)
Finish supporting importing the vast majority of `onnx` operations. This
includes:
- region support
- region value inherentance
- `torch.string` support
- `torch.list` support
- `torch.optional` support
2024-02-28 12:18:02 -08:00
Rob Suderman 6f3d62ab04
[torch] Fix folders and `cat` and `view` torch lowerings (#2963)
A bunch of small fixes are interlinked and trigger crashes if not
addressed as a group. This includes:

- aten view when expand from a rank-0 tensor
- slice folder with negative indices
- `aten._shape_as_tensor` folder on a rank-0 tensor
- `aten.cat` of a tensor with a length-0 tensor
2024-02-28 12:04:52 -08:00
Rob Suderman 73b6df9007
[torch] Fix DecomposeAtenInstanceNorm decomposition (#2960)
The decomposition only suports a NCHW lowering however the operation can
support arbitrary spatial dimensions. Updated the lowering to better
support spatial dimensions.
2024-02-28 10:27:19 -08:00