-- This commit adds e2e support for aten.randint by decomposing it into
an aten.randint.low by setting low=0.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
This commit adds the ability to specify extra abstract interpretation
functions in `torch_mlir.compile` to use during type refinement. This
allows users to easily add custom ops without having to interact with
MLIR or C++ directly.
The ops `aten.convolution_overrideable` and
`aten.convolution_backward_overrideable` are currently not e2e tested
in Torch-MLIR. Moreover, there is no way to add e2e tests for them
because the ops cannot be called using the CPU backend (this also
prevents adding tested dtype functions for these ops). Since these two
ops are not expected to ever appear in PyTorch traces obtained through
standard means (https://github.com/pytorch/pytorch/issues/97481),
Torch-MLIR should not have to worry about them.
There are several ops that have their shape function upstream and had
not been updated in Torch-MLIR to use the upstream version. This
commit updates those shape function. In addition, TODOs have been
added for shape functions that should be upstream but are not.
The original design for the dtype functions outlined in
https://github.com/llvm/torch-mlir/issues/1462 was unable to properly
handle ops that take optional tensors as an input when the optional
tensor has a value of None. By the time the op gets imported into
torch-mlir, if an optional value is None, all information about the
original type is lost from the op type signature, preventing
torch-mlir from knowing if a value of None was from an optional tensor
or not, which was crucial in the original design since each tensor
argument must be turned into two separate arguments for the dtype
function.
This commit changes the interface to dtype functions such that each
tensor turns into a tuple of two ints, the first representing the rank
of the tensor and the second the dtype of the tensor. Since now there
is a one-to-one correspondence between the operands of an op and the
operands of its dtype function, there is no ambiguity about which
operand of the op corresponds with which operand of the dtype
function.
To test the implementation, this commit defines dtype function for
convolution op, which takes one optional tensor as an argument.
Set PyTorch and TorchVision version to nightly release 2023-02-27.
This commit also adds the lowering for aten.add and aten.Float.Scalar op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.
This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
This commit replaces the `tanh` dtype function, which was being used
to test the implementation of dtype functions in
a710237437, with a dtype function for
`expm1`. The dtype function for `expm1` is identical to the `tanh`
one, so the same level of testing is maintained.
Currently, there are ops getting dtype information from the
`RefineTypes` pass and ops getting dtype information from the
`TorchDtypeRefinementPipeline`. Since each pass can only propagete
dtype information for the ops it knows how to handle, some models with
many ops handled in both passes require the two dtype propagation
passes to execute many times, reaching the iteration limit set in the
`LowerToBackendContractPass`. To temporarily avoid this issue while
the migration to `TorchDtypeRefinementPipeline` is finished, this
commit switches `tanh` to `expm1`, since the latter is used a lot less
in large models.
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked. Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result. This patch reverts the
commit to make the post-merge builds green again.
This commit adds support for passing to `torch_mlir.compile` the
result of running `torch.jit.trace` on a model by relaxing the
condition that checks if the model is already in JIT IR to allow any
`torch.jit.ScriptModule`.
Fixes https://github.com/llvm/torch-mlir/issues/1739
pytorch/pytorch@140a3139 reverted a change from yesterday, causing the
RollPyTorch action to break. This patch reverts the corresponding
change in the torch-mlir LTC code.
This patch also re-enables tests that were previously marked as XFAIL.
As [@ezyang suggested](https://github.com/pytorch/pytorch/issues/90276#issuecomment-1339791275),
use `torch._dynamo.optimizations.training.aot_autograd` instead of raw
`make_fx`. This is more future proof and gives us the backward pass and
functionalization. We don't currently get functionalization because of
https://github.com/pytorch/pytorch/issues/90759
This also incidentally fixes the source location handling, which makes
`lockstep_basic.py` give an accurate source location!
* [custom op] Generalize shape library logic to work with dtypes
This commit generalizes the shape library logic, so that dtype rules
for ops can also be expressed using the same mechanism. In other
words, each op can now have a shape function and a dtype function
specified in Python that is imported during lowering to calculate the
shapes and dtypes throught a program. For more information about how
to specify a dtype function, see the updated
`docs/adding_a_shape_and_dtype_function.md`.
For those not familiar with how the shape library works, the file
`docs/calculations_lib.md` provides an overview.
This was an experimental attempt at rolling out own op-by-op executor
with `__torch_dispatch__`, but it proved difficult to make it robust.
Op-by-op execution is very easy to implement robustly now with the
PyTorch 2.0 stack, so we don't need eager_mode.
Downstream users were using eager_mode to implement lockstep numerical
accuracy debuggers. We implemented the same functionality with
TorchDynamo in https://github.com/llvm/torch-mlir/pull/1681 so now there
is not much reason to continue maintaining it.
This adds a basic e2e Config for TorchDynamo using
Linalg-on-Tensors/RefBackend.
But TorchDynamo is pretty orthogonal to
various other pieces, so it should compose nicely with variations like:
- Switching out all the backends (Linalg-on-Tensors, TOSA, MHLO)
- PyTorch functionalization and decompositions
- Taking the example inputs and compiling with all dynamic or all static
shapes without duplicating tests.
This adds it to the CI, but there are still a lot of XFAIL's.
This also adds a helper `from torch_mlir.dynamo import
make_simple_dynamo_backend` which simplifies some of the steps for
making a Torch-MLIR-based TorchDynamo backend. We include "simple" in
the name because we are going to be exploring various things next from
the long-term roadmap.
The next steps are:
- Burn down all the XFAIL's.
- Start working on the pieces from the [long-term roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/long_term_roadmap.md).
- Add functionalization/decompositions into the TorchDynamo flow and
remove reliance on the current Torch-MLIR "frontend".
- Write a pure-Python direct FX->MLIR importer.
- Hook up the new PyTorch symbolic shape stuff.
- Explore PrimTorch decompositions for simplifying backends.
-- aten.upsample_nearest2d.vec op is not present
owing to https://github.com/pytorch/pytorch/pull/85638
-- So this commit adds a lowering on aten.upsample_nearest2d.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
For AoT deployments models often have multiple exported methods.
This patch enables something like this:
```
class TwoMethodsModule(torch.nn.Module):
def sin(self, x):
return torch.ops.aten.sin(x)
def cos(self, x):
return torch.ops.aten.cos(x)
example_args = torch_mlir.ExampleArgs()
example_args.add_method("sin", torch.ones(2, 3))
example_args.add_method("cos", torch.ones(2, 4))
print(torch_mlir.compile(TwoMethodsModule(), example_args))
```
In the
[long-term](https://github.com/llvm/torch-mlir/blob/main/docs/long_term_roadmap.md#tools-for-advanced-aot-deployments)
we will need to reconcile this with our story for stateful models and the
backend contract being purely functional. For now, this provides some basic
infra that seems harmless. Arguably, we could tighten up the backend contract
even more to only allow a single compiled function which would prohibit this or
require building out a layer above.
Fixes#1557
Unless requested otherwise, PyTorch no longer installs most of the
header files under the caffe2 directory (see
https://github.com/pytorch/pytorch/pull/87986). This breaks our
importer code since we need to use the `MakeGuard()` function to execute
statements in the event of exceptions.
To fix this issue, this patch implements a rudimentary version of
PyTorch's ScopeGuard, where once the class variable goes out of scope,
it executes a predefined method.
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
* Add LazyGraphExecutor registration
* Update PyTorch version to 1.14.0.dev20221024
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
This commit makes the following changes needed to update bump LLVM:
- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Allow customizing `backend_legal_ops` for "torch" output type, since we
don't know which backend will be used (it might be a custom backend).
We don't allow customizing the `backend_legal_ops` for the other output
types (Linalg, TOSA, MHLO) since those backends control their set of
legal ops directly.
Fixes#1418
-- This commit adds e2e support for `aten.Mish` op.
-- `aten.Mish` op is decomposed as following :-
Mish(x) = x * Tanh(Softplus(x))
Signed-off-by: Abhishek Varma <avarma094@gmail.com>
Signed-off-by: Abhishek Varma <avarma094@gmail.com>
This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend
* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types
* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions
* Test updates
* Move back module variable name
* Remove RefineTypes from TorchMlirLoweringContext::Build()
* Rename pass; Remove passes from base lazy backend
* Rename pass to VerifyBackendContractPass
* Aligned cmd pass name; Fixed TorchConversion passes registration
* test: allow spaces in path to Python executable
On Windows, the path to the Python binary may contain spaces, so this
patch adds quotes around the path to the python executable.
Thanks to @sstamenova for suggesting the fix!
* python: remove header file that causes Windows build failures
Similar to https://reviews.llvm.org/D125284, we can safely remove this
header file without affecting the build on either Linux. It is
necessary to remove this header file on Windows builds since otherwise
it causes build errors.
* python: drop `TORCH_API` from function defined in Torch-MLIR
`TORCH_API` should apply to functions that are either exported by
libtorch.so or ones that are imported from libtorch.so by its downstream
consumers (like Torch-MLIR). Neither case applies to the
`importJitFunctionAsFuncOp()` function, since it is defined in
Torch-MLIR (and thus outside libtorch.so). This patch fixes the problem
by dropping `TORCH_API` from that function's declaration.
* python: make output of class anotations deterministic
The `class-annotator-repr.py` test checks for class annotations in a
specific order, but prior to this patch, the order was
non-deterministic, since the code iterated on an _unordered_ map.
This patch makes the iteration order deterministic through two changes:
1. using a sorted map
2. using the class qualified name instead of the address of the class in
memory
* test: use Python3_EXECUTABLE as interpreter path for consistency
This ensures that tests use the Python3 version that was detected using
CMake, instead of whichever python version that happens to be in the
PATH variable when invoking the test.
* test: fix RUN string
The parenthesis syntax does not run on Windows (the shell interprets the
`(` character as part of the path). Moreover, the ODR violation in the
comment no longer seems to apply.
* python: port parallel test framework to Windows
Since Windows does not support `fork` natively, Python's
`multiprocessing` module needs to use `spawn` on Windows. However, to
use `spawn`, the multiprocessing module serializes (or pickles) the
worker function and its arguments. Sadly, the multiprocessing module
(both the default one in Python and the one that is extended in PyTorch)
is unable to serialize lambda functions (see
https://stackoverflow.com/a/19985580) for detals.
Unfortunately, given how our tests are structured, we require that the
function under test is passed as an argument to another function, so we
cannot sidestep our use of lambda functions.
To resolve this problem, this patch makes use of the `multiprocess` and
`dill` Python modules, which together offers a multiprocessing mechanism
that can serialize lambda functions. The multiprocess module also
offers a process pool, which simplifies the code for our parallel
testing framework.
* Propagate parameter name to MLIR
* Add TorchMlirNode Constructor Hook
* Make func_op mutable
- Purpose of this is to allow modification of func_op by subclass
backend
* Clean up unnecessary changes
* Remove unnecessary attribute case
* Address PR comments
Strength the shape inference for aten.arange-like op by
1. registering aten.sub and aten.ceil.Scalar op and design folders for them.
2. register a new constant-like op: Torch::ConstantNumberOp and design canonicalizer for it.
As @oroppas identified, literal strings that are over 16,380 characters
cause the MSVC compiler to throw an error (C2026), eventually causing
the Windows build of Torch-MLIR to fail because the length of the
generated MLIR for the shape library crosses the allowed threshold.
This patch fixes the problem by making the Python script generate one
literal string per line to satisfy the MSVC compiler.
Thanks to @oroppas for the bulk of the effort required to resolve this!
* Add aten.frobenius_norm.dim op and init its conversion pattern to linalg and MHLO,
* run symbolic-shape-optimization before hlo-legalize-to-linalg to fit more mhlo e2e tests.
This commit adds decomposition of `aten.linear` op. Due to limited
support at tosa backend in case of dynamic dimensions, this
decomposition is currently disabled for tosa backend.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
We use it for more than TorchScript testing now. This is a purely
mechanical change to adjust some file paths to remove "torchscript".
The most perceptible change here is that now e2e tests are run with
```
./tools/e2e_test.sh
instead of:
./tools/torchscript_e2e_test.sh
```
We were already hitting many cases where backends different in terms of
the legal ops that they wanted. This caused unnecessary coupling between
the backends. Examples:
- https://github.com/llvm/torch-mlir/pull/1161
- https://github.com/llvm/torch-mlir/pull/862
This PR centralizes all compilation to go through `torch_mlir.compile`
so that we can keep the logic centralized there. We should move these
lists closer to each backend. Especially cases like
https://github.com/llvm/torch-mlir/pull/862 where blocking a
decomposition is necessary to avoid a crash emphasize that the set of
decompositions is tightly coupled to the backend, and should be
"controlled by the backend" and not something arbitrarily tweakable.
Also:
- Fix a small bug in the way we passed through the backendLegalOps
option.
- Add better error messages in `torch_mlir.compile` for import errors.
I recently fixed the handling of the `dim` argument in
`sum_mean_dim` (59fccab857). Therefore,
the checks that the `dim` input is `None` or `[]` are no longer needed.
Bumps the shape library:
- Updates the function signature for aten.arange.start_step
- upstream_shape_functions.mean_dim -> upstream_shape_functions.sum_mean_dim
* Propagate device data names
* Address PR comment
* Add example usage
* Add test for device data names
* Make TorchMlirComputation fields protected
* Add lazy backend device data name unit tests
* Disable lazy backend tests if LTC is disabled
* Add comments
follow up #761:
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is Float16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
PyTorch recently added support for `dim=None` in the `torch.var`
(5ca9b2b6fa)
and `torch.std`op (eb0e30e0bc).
This commit adds the corresponding support in torch-mlir.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
In some cases, users know that a traced graph is valid for a wider set
of shapes than they originally traced it with. Provide an option for
users to ignore the shapes in the traced graph when they know it is
legal.
Fixes#997
* Replace CHECK_EQ with TORCH_CHECK_EQ
* Check value of TORCH_MLIR_USE_INSTALLED_PYTORCH during LTC build
* Update LTC XFAIL with NewZerosModule ops
* Explicitly blacklist _like ops
* Automatically blacklist new_/_like ops
* Prune away unused Python dependencies from LTC
* Add flag to disable LTC
* Autogen dummy _REFERENCE_LAZY_BACKEND library when LTC is disabled
* Implement compute_shape_var
* Removed Var tests from XFAIL Set
* XFAIL tests using _local_scalar_dense or index.Tensor
* Add StdDim tests to XFAIL set
* Autogen aten::cat
* Changed Example MLIR backend to Reference MLIR backend
* Moved reference_ltc_backend into csrc
* Merged sys_utils.h
* Renamed reference_ltc_backend to reference_lazy_backend
* Addressed review comments
* Update docs with new library name
* Removed _REFERENCE_LAZY_BACKEND from .gitignore
* Added reference_lazy_backend to the TorchMLIRPythonModules dependency list
Fixed typo in `ltc_examples.md`
Missed instance where `ltc_backend` was used instead of `lazy_backend`.
- Pruned number of xfailed e2e LTC tests from 305 to 134
- Reviewed every failure to ensure the error genuinely warrants an xfail
- Fixed bug where non-tensor outputs of LTC computation had `.to('cpu')` called, which caused a failure and inflated the xfail count
- Fixed bug with `HBC_basic` test where a constant tensor was created in its constructor without being declared as a buffer, which prevented the device from being updated when the parent `torch.nn.Module` got moved to the `lazy` device
- Note that this test is still xfail'd due to some unsupported ops. Left a comment about some potential issues that may arise if it gets reenabled in the future
- Updated autogen `GeneratedTorchOps.td` to reflect the latest set of supported ops
- Renamed `aten.zero.functionalization` to `aten.zero` to reflect upstream PyTorch changes
* Added e2e LTC Torch MLIR tests
* Fix seed for reproducability
* Check if computation is None before getting debug string
* Updated unit tests, and added numeric tests
* Print name of the model layer that fails numeric validation
* Run LTC e2e test with CI/CD
* Set seed in main function, instead of beginning of execution
* Add comment to specify number of digits of precision
* Fixed typo
* Remove tests for LTC example models
* Added LTC option to torchscript e2e
* Implement compile and run for LTC e2e test
* xfail all tests that use ops that aren't currently supported
* Update native function definitions
* Add ops to support bert lowering
- Add empty_strided and as_strided
- Restore zeros_like to op blacklist (Without this, tensors will be unintentionally created with a CPU device rather than lazy)
- Check for composite implicit ops and add device data IR
- Also fix codegen for functionalization
* Add autogen to CMakeList
* Remove PyTorch submodule
* Reduced BERT model size
* Print Mark Step status in Torch MLIR LTC debug string
* Apply fixes to work with latest upstream/main
- Pass importOptions into getMlirTypeFromTorchType during NodeImporter::importNode
Without this, the tensor type created may have a mismatched type as ImportOptions may cause vtensor to be used instead of tensor
* Update shape inference functions
- Fixed compute_shape_native_batch_norm when mean and var are uninitialized
Previously, the number of shapes returned would be <3 if either mean or val was didn't exist. Instead, we now initialize them with a vector matching the number of channels.
- Implemented compute_shape_mul
- Fixed bug in reshape shape inference error message
* Get MLIR backend more consistent with TS backend
- Remove LazyNativeFunctions::_unsafe_view from autogen
- Blacklist ops to make JIT graph more like output of TS backend
- Print graph when SSA value has mismatch of types and results
- Remove normalize_index from LazyShapeInference
- Fix seeds for LTC example models
* Update and clean up shape inference functions
- Prune shape inference functions
- Add shape inference function for GenerateSlice
- Add shape inference function for GenerateCopy
Co-authored-by: Henry Tu <henry.tu@cerebras.net>
* Assume zero rank tensors are scalar
* Run RefineTypes pass on JIT Graph
* Rollback assumption that zero rank tensors are scalar
* Set numSizes to -1 for non-ranked tensors
* Rename RefineTypes to RefineTupleTypes
* Save InputOutputAliases to TorchMlirComputation
* Implement GetResultShape for TorchMlirLoweringContext
* Use optional return type for GetResultShape
* Remove support for aten::detach
With this op enabled, tensors were being copied, which resulted in incorrect aliasing.
* Add newline before printing I/O alias mapping
* Changed printout to use "Input param" as label instead of "Input"
* Remote shape inference function for aten::detach
* Moved implementation of SetUpAlias to MlirLoweringContext
As part of this change, TorchMlirComputation has been moved to the end of mlir_lowering_context.h so that it can access some new structs in TorchMlirLoweringContext
* Use updated PyTorch API
* Remove GetResultShape
Complements this upstream PyTorch PR: pytorch/pytorch#75828
This PR adds support for mapping input and output tensors which alias each other. (e.g. maps input weight tensor in parameter to the same tensor in output after a training iteration)
MLIR:
func @graph(%arg0: !torch.vtensor<[1,5],f32>, %arg1: !torch.vtensor<[1],si64>, ..., %arg6: !torch.vtensor<[10,5],f32>, %arg7: !torch.vtensor<[10],f32>, ...) {
...
return %arg0, %arg1, %17, %23, ... : !torch.vtensor<[1,5],f32>, !torch.vtensor<[1],si64>, !torch.vtensor<[10,5],f32>, !torch.vtensor<[10],f32>, ...
}
Input/Output Alias Mapping:
Output: 0 -> Input: 0
Output: 1 -> Input: 1
Output: 2 -> Input: 6
Output: 3 -> Input: 7
The aten::detach op has also been disabled in this PR to fix the issue of tensors not aliasing properly due to copying.
* Added JIT to MLIR lowering
Lowering to JIT is performed in a way similar to how it's done in the TS LTC backend. After a jit::Graph is constructed, it gets converted to a jit::Function, which is fed into the existing utility to generate an MlirModule in torch-mlir.
* Renamed `csrc/backend` to `csrc/base_lazy_backend`
This commit fixes the shape calculation for:
1.) aten.mean.dim
2.) aten.var.dim
3.) aten.sum.dim_IntList op
Also, it fixes the lowering of `aten.mean.dim` and
`aten.sum.dim_IntList` for handling the cases of empty dim list.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com
- Includes a canonicalizer for `aten.add.t`needed for successfully lowering the shape function
- Only offers support for statically sized index tensors when there is more than one
- Dynamic shape support remains for single indexing tensors
In the interest of merging upstream LLVM quickly, a previous patch
(7f08169) updated the torch-mlir build to register all dialects and
passes through Python bindings. This patch limits the dialects and
passes to only those that are used in torch-mlir.
Key to this change are the removal of
`MLIRPythonExtension.RegisterEverything` and the introduction of a new
Python module (`_mlir_libs/_site_initialize_0.py`), where we register
the dialects and passes used by torch-mlir.
This patch makes some rudimentary changes to torch-mlir's use of MLIR
Python bindings to work with the most recent LLVM code. We can perhaps
do better by being more selective in what we link against, instead of
using `MLIRPythonExtension.RegisterEverything`.